Computer Science ›› 2024, Vol. 51 ›› Issue (9): 214-222.doi: 10.11896/jsjkx.230800102
• Artificial Intelligence • Previous Articles Next Articles
DAI Chaofan, DING Huahua
CLC Number:
[1]SINGH R,MEDURI V V,ELMAGARMID A,et al.Synthesizing entity matching rules by examples[J].Proceedings of the VLDB Endowment,2017,11(2):189-202. [2]BILENKO M,MOONEY R J.Adaptive duplicate detectionusing learnable string similarity measures[C]//Proceedings of the Ninth ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining.2003:39-48. [3]DOAN A H,KONDA P,SUGANTHAN GC P,et al.Magellan:toward building ecosystems of entity matching solutions[J].Communications of the ACM,2020,63(8):83-91. [4]MUDGAL S,LI H,REKATSINAS T,et al.Deep learning for entity matching:A design space exploration[C]//Proceedings of the 2018 International Conference on Management of Data.2018:19-34. [5]EBRAHEEM M,THIRUMURUGANATHAN S,JOTY S,et al.Distributed representations of tuples for entity resolution[J].Proceedings of the VLDB Endowment,2018,11(11):1454-1467. [6]LI Y,LI J,SUHARA Y,et al.Deep entity matching with pre-trained language models[J].arXiv:2004.00584,2020. [7]PRIMPELI A,PEETERS R,BIZER C.The WDC training dataset and gold standard for large-scale product matching[C]//Companion Proceedings of The 2019 World Wide Web Confe-rence.2019:381-386. [8]TU J,FAN J,TANG N,et al.Domain adaptation for deep entity resolution[C]//Proceedings of the 2022 International Confe-rence on Management of Data.2022:443-457. [9]ARAZO E,ORTEGO D,ALBERT P,et al.Unsupervised label noise modeling and loss correction[C]//International Confe-rence on Machine Learning.PMLR,2019:312-321. [10]OLIVER A,ODENA A,RAFFEL C A,et al.Realistic evalu-ation of deep semi-supervised learning algorithms[C]//Procee-dings of theAdvances in Neural Information Processing Systems.2018:3239-3250. [11]ZHANG Z,RINGEVAL F,DONG B,et al.Enhanced semi-supervised learning for multimodal emotion recognition[C]//2016 IEEEInternational Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2016:5185-5189. [12]GONZÁLEZ M,BERGMEIR C,TRIGUERO I,et al.Self-labeling techniques for semi-supervised time series classification:an empirical study[J].Knowledge and Information Systems,2018,55:493-528. [13]MIYATO T,DAI A M,GOODFELLOW I.Adversarial training methods for semi-supervised text classification[J].arXiv:1605.07725,2016. [14]LI Y,LIU L,TAN R T.Certainty-driven consistency loss for semi-supervised learning[J].arXiv.1901.05657,2019. [15]SAJJADI M,JAVANMARDI M,TASDIZEN T.Regularization with stochastic transformations and perturbations for deep semi-supervised learning[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.2016:1171-1179. [16]ARAZO E,ORTEGO D,ALBERT P,et al.Pseudo-labeling and confirmation bias in deep semi-supervised learning[C]//2020 International Joint Conference on Neural Networks(IJCNN).IEEE,2020:1-8. [17]ISCEN A,TOLIAS G,AVRITHIS Y,et al.Label propagationfor deep semi-supervised learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:5070-5079. [18]ZHANG H,CISSE M,DAUPHIN Y N,et al.mixup:Beyondempirical risk minimization[J].arXiv:1710.09412,2017. [19]SINGH R,MEDURI V,ELMAGARMID A,et al.Generatingconcise entity matching rules[C]//Proceedings of the 2017 ACM International Conference on Management of Data.2017:1635-1638. [20]SUN B,FENG J,SAENKO K.Return of frustratingly easy domain adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2016. [21]CHAI C,LI G,LI J,et al.Cost-effective crowdsourced entity resolution:A partial-order approach[C]//Proceedings of the 2016 International Conference on Management of Data.2016:969-984. [22]CHAI C,LI G,LI J,et al.A partial-order-based framework for cost-effective crowdsourced entity resolution[J].The VLDB Journal,2018,27:745-770. [23]CUI L,CHEN J,HE W,et al.Achieving approximate global optimization of truth inference for crowdsourcing microtasks[J].Data Science and Engineering,2021,6(3):294-309. [24]LI G,CHAI C,FAN J,et al.CDB:A crowd-powered database system[J].Proceedings of the VLDB Endowment,2018,11(12):1926-1929. [25]AZZALINI F,JIN S,RENZI M,et al.Blocking techniques for entity linkage:A semantics-based approach[J].Data Science and Engineering,2021,6:20-38. [26]CHRISTEN P.Automatic record linkage using seeded nearest neighbour and support vector machine classification[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2008:151-159. [27]MCCALLUM A,WELLNER B.Conditional models of identity uncertainty with application to noun coreference[C]//Procee-dings of the 17th International Conference on Neural Information Processing Systems.2004:905-912. [28]YAO D,GU Y,CONG G,et al.Entity resolution with hierarchical graph attention networks[C]//Proceedings of the 2022 International Conference on Management of Data.2022:429-442. [29]GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks[J].The Journal of Machine Learning Research,2016,17(1):2096-2030. [30]LIU T,FAN J,LUO Y,et al.Adaptive data augmentation for supervised learning over missing data[J].Proceedings of the VLDB Endowment,2021,14(7):1202-1214. [31]LONG M,CAO Y,WANG J,et al.Learning transferable features with deep adaptation networks[C]//International Confe-rence on Machine Learning.PMLR,2015:97-105. [32]TANG H,JIA K.Discriminative adversarial domain adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:5940-5947. [33]TZENG E,HOFFMAN J,SAENKO K,et al.Adversarial discriminative domain adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:7167-7176. [34]KUMAGAI A,IWATA T,FUJIWARA Y.Transfer metriclearning for unseen domains[J].Data Science and Engineering,2020,5:140-151. [35]CHOI Y,CHOI M,KIM M,et al.Stargan:Unified generativeadversarial networks for multi-domain image-to-image translation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8789-8797. [36]GE Y,CHEN D,LI H.Mutual mean-teaching:Pseudo label refinery for unsupervised domain adaptation on person re-identification[J].arXiv:2001.01526,2020. [37]LONG M,ZHU H,WANG J,et al.Deep transfer learning with joint adaptation networks[C]//International Conference on Machine Learning.PMLR,2017:2208-2217. [38]SUN B,FENG J,SAENKO K.Return of frustratingly easy domain adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2016. [39]ZELLINGER W,GRUBINGER T,LUGHOFER E,et al.Central moment discrepancy(cmd) for domain-invariant representation learning[J].arXiv:1702.08811,2017. [40]GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks[J].The journal of machine learning research,2016,17(1):2096-2030. [41]TZENG E,HOFFMAN J,SAENKO K,et al.Adversarial dis-criminative domain adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:7167-7176. [42]GHIFARY M,KLEIJN W B,ZHANG M,et al.Deep reconstruction-classification networks for unsupervised domain adaptation[C]//Computer Vision-ECCV 2016:14th European Conference,Amsterdam,The Netherlands,October 11-14,2016,Proceedings,Part IV 14.Springer International Publishing,2016:597-613. [43]THIRUMURUGANATHAN S,PARAMBATH S A P,OUZZANI M,et al.Reuse and adaptation for entity resolutionthrough transfer learning[J].arXiv:1809.11084,2018. [44]KASAI J,QIAN K,GURAJADA S,et al.Low-resource deep entity resolution with transfer and active learning[J].arXiv:1906.08042,2019. [45]TU J,FAN J,TANG N,et al.Domain adaptation for deep entity resolution[C]//Proceedings of the 2022 International Confe-rence on Management of Data.2022:443-457. [46]TRABELSI M,HEFLIN J,CAO J.DAME:Domain Adaptation for Matching Entities[C]//Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining.2022:1016-1024. [47]TANG N,FAN J,LI F,et al.RPT:relational pre-trained transformer is almost all you need towards democratizing data preparation[J].arXiv:2012.02469,2020. [48]LEE J,TOUTANOVA K.Pre-training of deep bidirectionaltransformers for language understanding[J].arXiv:1810.04805,2018. [49]LIU Y,OTT M,GOYAL N,et al.Roberta:A robustly opti-mized bert pretraining approach[J].arXiv:1907.11692,2019. [50]SANH V,DEBUT L,CHAUMOND J,et al.DistilBERT,a distilled version of BERT:smaller,faster,cheaper and lighter[J].arXiv:1910.01108,2019. [51]RIZVE M N,DUARTE K,RAWAT Y S,et al.In defense of pseudo-labeling:An uncertainty-aware pseudo-label selection framework for semi-supervised learning[J].arXiv:2101.06329,2021. [52]MUKHERJEE S,AWADALLAH A.Uncertainty-aware self-training for few-shot text classification[J].Advances in Neural Information Processing Systems,2020,33:21199-21212. [53]GAL Y,GHAHRAMANI Z.Dropout as a bayesian approximation:Representing model uncertainty in deep learning[C]//International Conference on Machine Learning.PMLR,2016:1050-1059. [54]WU R,CHABA S,SAWLANI S,et al.Zeroer:Entity resolution using zero labeled examples[C]//Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data.2020:1149-1164. [55]VAN DER MAATEN L.Barnes-hut-sne[J].arXiv:1301.3342,2013. |
[1] | MO Shuyuan, MENG Zuqiang. Multimodal Sentiment Analysis Model Based on Visual Semantics and Prompt Learning [J]. Computer Science, 2024, 51(9): 250-257. |
[2] | KANG Xinchen, DONG Xueyan, YAO Dengfeng, ZHONG Jinghua. Advancements and Prospects in Dysarthria Speaker Adaptation [J]. Computer Science, 2024, 51(8): 11-19. |
[3] | TANG Ruiqi, XIAO Ting, CHI Ziqiu, WANG Zhe. Few-shot Image Classification Based on Pseudo-label Dependence Enhancement and NoiseInterferenceReduction [J]. Computer Science, 2024, 51(8): 152-159. |
[4] | TIAN Qing, LU Zhanghu, YANG Hong. Unsupervised Domain Adaptation Based on Entropy Filtering and Class Centroid Optimization [J]. Computer Science, 2024, 51(7): 345-353. |
[5] | YIN Xudong, CHEN Junyang, ZHOU Bo. Study on Industrial Defect Augmentation Data Filtering Based on OOD Scores [J]. Computer Science, 2024, 51(6A): 230700111-7. |
[6] | YANG Binxia, LUO Xudong, SUN Kaili. Recent Progress on Machine Translation Based on Pre-trained Language Models [J]. Computer Science, 2024, 51(6A): 230700112-8. |
[7] | XU Yiran, ZHOU Yu. Prompt Learning Based Parameter-efficient Code Generation [J]. Computer Science, 2024, 51(6): 61-67. |
[8] | WANG Jiahao, FU Yifu, FENG Hainan, REN Yuheng. Indoor Location Algorithm in Dynamic Environment Based on Transfer Learning [J]. Computer Science, 2024, 51(5): 277-283. |
[9] | PAN Lei, LIU Xin, CHEN Junyi, CHENG Zhangtao, LIU Leyuan, ZHOU Fan. Event Prediction Based on Dynamic Graph with Local Data Augmentation [J]. Computer Science, 2024, 51(3): 118-127. |
[10] | JING Yeyiran, YU Zeng, SHI Yunxiao, LI Tianrui. Review of Unsupervised Domain Adaptive Person Re-identification Based on Pseudo-labels [J]. Computer Science, 2024, 51(1): 72-83. |
[11] | XU Jie, WANG Lisong. Contrastive Clustering with Consistent Structural Relations [J]. Computer Science, 2023, 50(9): 123-129. |
[12] | CUI Fuwei, WU Xuanxuan, CHEN Yufeng, LIU Jian, XU Jin'an. Survey of Domain Adaptive Methods with Knowledge Integrating [J]. Computer Science, 2023, 50(8): 142-149. |
[13] | LIANG Jiayin, XIE Zhipeng. Text Paraphrase Generation Based on Pre-trained Language Model and Tag Guidance [J]. Computer Science, 2023, 50(8): 150-156. |
[14] | ZENG Wu, MAO Guojun. Few-shot Learning Method Based on Multi-graph Feature Aggregation [J]. Computer Science, 2023, 50(6A): 220400029-10. |
[15] | WANG Qingyu, WANG Hairui, ZHU Guifu, MENG Shunjian. Study on SQL Injection Detection Based on FlexUDA Model [J]. Computer Science, 2023, 50(6A): 220600172-6. |
|