Computer Science ›› 2024, Vol. 51 ›› Issue (7): 167-196.doi: 10.11896/jsjkx.230900110
• Computer Graphics & Multimedia • Previous Articles Next Articles
HAN Bing, DENG Lixiang, ZHENG Yi, REN Shuang
CLC Number:
[1]KATO S,TOKUNAGA S,YUYA M,et al.Autoware on board:Enabling autonomous vehicles with embedded systems[C]//Proceedings of the IEEE International Conference on Cyber-Physical Systems(ICCPS).2018:287-296. [2]FRANCOIS P,FRANCIS C,ROLAND S.A review of pointcloud registration algorithms for mobile robotics[J].Foundations and Trends in Robotics,2015,4(1):1-10. [3]QI C R,HAO S,MO K,et al.Pointnet:Deep learning on point sets for 3d classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2017:77-85. [4]QI C R,LI Y,HAO S,et al.Pointnet++:Deep hierarchical feature learning on point sets in a metric space[C]//Advances in Neural Information Processing Systems(NeurIPS).2017:5099-5108. [5]WANG Y,SUN Y B,LIU Z W,et al.Dynamic graph cnn for learning on point clouds[J].ACM Transactions on Graphics,2019,38(5):146:1-12. [6]GUO Y L,WANG H Y,HU Q Y,et al.Deep learning for 3d point clouds:A survey[J].IEEE Transactions on Pattern Ana-lysis and Machine Intelligence,2021,43(12):4338-4364. [7]GEIGER A,LENZ P,URTASUN R.Are we ready for autonomous driving? The kitti vision benchmark suite[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2012:3354-3361. [8]DAI A,CHANG A X,SAVVA M,et al.Scannet:Richly-annotated 3d reconstructions of indoor scenes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2017:2432-2443. [9]ZHANG Y,ZHAO W H,SUN B,et al.Point cloud upsampling algorithm:A systematic review[J].Algorithms,2022,15(4):1-17. [10]WANG H C,ZHANG C L,LI M L.Research on point cloud upsampling algorithms based on deep learning[J].Journal of Image and Signal Processing,2023,12(1):21-31. [11]WANG Z H,CHEN J,HOI S C.Deep learning for image super-resolution:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,43(10):3365-3387. [12]HUANG H,WU S H,GONG M L,et al.Edge-aware point set resampling[J].ACM Transactions on Graphics.2013,32(1):9:1-9:12. [13]YU L Q,LI X Z,FU C W,et al.Pu-net:Point cloud upsampling network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2018:2790-2799. [14]YU L Q,LI X Z,FU C W,et al.Ec-net:An edge-aware point set consolidation network[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:1-17. [15]WANG Y F,WU S H,HUANG H,et al.Patch-based progressive 3d point set upsampling[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2019:5958-5967. [16]ZHANG W T,JIANG H L,YANG Z S H,et al.Data-driven upsampling of point clouds[J].Computer-Aided Design,2019,112:1-13. [17]ZHOU K Y,DONG M,ARSLANTURK S Z.“Zero-shot” point cloud upsampling[J].arXiv:2106.13765,2022. [18]ZENG G,LI H S,WANG X C,et al.Point cloud up-sampling network with multi-level spatial local feature aggregation[J].Computers and Electrical Engineering,2021,94:1-10. [19]LU J,LI Z,CHENG H Z,et al.Denseconv for 3d point set upsampling[J].Electronics Letters,2021,57(10):397-399. [20]WANG G Y,XU G,WU Q,et al.Two-stage point cloud super resolution with local interpolation and readjustment via outer-product neural network[J].Journal of Systems Science & Complexity,2021,34:68-82. [21]DING D D,QIU C,LIU F C,et al.Point cloud upsampling via perturbation learning[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(12):4661-4672. [22]QIAN G C,ABUALSHOUR A,LI G H,et al.Pu-gcn:Point cloud upsampling using graph convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2021:11683-11692. [23]LI G H,MüLLER M,THABET A,et al.Deepgcns:Can gcns go as deep as cnns[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV).2019:9267-9276. [24]BALLESTER P,ARAUJO R M.On the performance ofgooglenet and alexnet applied to sketches[C]//Proceedings of the AAAI Conference on Artificial Intelligence(AAAI).2016:1124-1128. [25]MA H R,WANG J M,SUN Y K,et al.Pu-lngcn:Multi-scale design of point cloud upsampling using graph convolutional networks[C]//Proceedings of the International Conference on Computing and Artificial Intelligence(ICCAI).2022:711-718. [26]GU F,ZHANG C L,WANG H Y,et al.Pu-wgcn:Point cloud upsampling using weighted graph convolutional networks[J].Remote Sensing,2022,14:1-20. [27]AKHTAR ANIQUE,LI ZHU,AUWERA G V,et al.Pu-dense:Sparse tensor-based point cloud geometry upsampling[J].IEEE Transactions on Image Processing,2022,31:4133-4148. [28]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//Proceedings of the Medical Image Computing and Computer-Assisted Intervention(MICCAI).2015:234-241. [29]MAO A H,DU Z H,HOU J H,et al.Pu-flow:A point cloud upsampling network with normalizing flows[J].IEEE Transactions on Visualization and Computer Graphics,2023,29(12):4964-4977. [30]LONG C,ZHANG W X,LI R H,et al.Pc2-pu:Patch correlation and point correlation for effective point cloud upsampling[C]//Proceedings of the ACM International Conference on Multimedia(ACMMM).2022:2191-2201. [31]LI Q,DAI T,XIA S T.A comparative study of feature expansion unit for 3d point cloud upsampling[J].arXiv:2205.09594,2022. [32]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems(NeurIPS).2017:6000-6010. [33]CORDONNIER J B,LOUKAS A,JAGGI M.On the relationship between self-attention and convolutional layers[C]//Proceedings of the International Conference on Learning Representations(ICLR).2020. [34]HAN K,WANG Y H,CHEN H T,et al.A survey on vision transformer[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(1):87-110. [35]LI R H,LI X Z,HENG P A,et al.Point cloud upsampling via disentangled refinement[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition(CVPR).2021:344-353. [36]YEH C,LIN W C.Enhanced point cloud upsampling usingmulti-branch network and attention fusion[C]//Proceedings of the International Conference on Computer System,Information Technology,and Electrical Engineering(COSITE).2021:51-56. [37]HAN B,ZHANG X Y,REN S.Pu-gacnet:Graph attention convolution network for point cloud upsampling[J].Image and Vision Computing,2022,118:1-13. [38]WU M,JIAO H L,NAN J X.Sparse 3d point cloud parallel multi-scale feature extraction and dense reconstruction with multi-headed attentional upsampling[J].Electronics,2022,11(19):3157. [39]LI Z Z,LI G,LI T H,et al.Semantic point cloud upsampling[J].IEEE Transactions on Multimedia,2022,18(9):1-11. [40]ZHAO H S,JIANG L,JIA J Y,et al.Point transformer[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV).2021:16259-16268. [41]QIU S,ANWAR S,BARNES N.Pu-transformer:Point cloudupsampling transformer[C]//Proceedings of the Asian Confe-rence on Computer Vision(ACCV).2022:2475-2493. [42]WANG Y R,WANG S Y,SUN L H.Point cloud upsampling via a coarse-to-fine network[C]//Proceedings of the International Conference on Multimedia Modeling(MMM).2022:467-478. [43]DU H,YAN X J,WANG J J,et al.Point cloud upsampling via cascaded refinement network[C]//Proceedings of the Asian Conference on Computer Vision(ACCV).2022:586-601. [44]LEE H,LIM S.Pu-mfa:Point cloud up-sampling via multi-scale features attention[J].Sensors,2022,22(23):9308. [45]ZHAO T M,LI L F,TIAN T,et al.Apunet:Attention-guided upsampling network for sparse and non-uniform point cloud[J].Pattern Recognition,2023,143:109796. [46]CAI P P,WU Z Y,WU X Y,et al.Parametric surface constrai-ned upsampler network for point cloud[C]//Proceedings of the AAAI Conference on Artificial Intelligence(AAAI).2023:250-258. [47]KIM D,SHIN M,PAIK J.Pu-edgeformer:Edge transformer for dense prediction in point cloud upsampling[J].arXiv:2305.01148,2023. [48]DENG L X,HAN B,REN S.Upu-dgtnet:Dynamic graph transformer network for unsupervised point cloud upsampling[C]//Proceedings of the IEEE International Conference on Computer and Communications(ICCC).2022:1395-1399. [49]HAN B,DENG L X,ZHENG Y,et al.Upu-snet:Siamese net-work for unsupervised point cloud upsampling based on spatial-aware transformers[J].Computers & Graphics,2023,115:484-499. [50]LI R H,LI X Z,FU C W,et al.Pu-gan:A point cloud upsampling adversarial network[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV).2019:7203-7212. [51]YANG Y Q,FENG C,SHEN Y R,et al.Foldingnet:Point cloud auto-encoder via deep grid deformation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2018:206-215. [52]LV W Q,WEN H J,CHEN H.Point cloud upsampling by ge-nerative adversarial network with skip-attention[C]//Procee-dings of the International Symposium on Computer Engineering and Intelligent Communications(ISCEIC).2021:186-190. [53]LI W T,HASEGAWA K,LI L,et al.Deep learning-based point upsampling for edge enhancement of 3d-scanned data and its application to transparent visualization[J].Remote Sensing,2021,13:1-26. [54]ZHAO W H,WEN W,LIU K,et al.An improved point cloud upsampling algorithm for x-ray diffraction on thermal coatings of aeroengine blades[J].Applied Science,2022,12:1-12. [55]SHEN B,LI L,HU X R,et al.A point cloud upsampling adversarial network based on residual multi-scale off-set attention[J].Virtual Reality & Intelligent Hardware,2023,5(1):81-91. [56]WU H K,ZHANG J G,HUANG K Q.Point cloud super resolution with adversarial residual graph networks[J].arXiv:1908.02111,2019. [57]LI X M,OWN C M,WU K Z,et al.Cm-net:A point cloud upsampling network based on adversarial neural network[C]//Proceedings of the International Joint Conference on Neural Networks(IJCNN).2021:1-8. [58]LIU H,YUAN H,HAMZAOUI R,et al.Pu-refiner:A geome-try refiner with adversarial learning for point cloud upsampling[C]//Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).2022:2270-2274. [59]LIU H,YUAN H,HOU J H,et al.Pufa-gan:A frequency-aware generative adversarial network for 3d point cloud upsampling[J].IEEE Transactions on Image Processing,2022,31:7389-7402. [60]LI Z Z,WANG W M,LEI N,et al.Weakly supervised point cloud upsampling via optimal transport[C]ICASSP.2022:2564-2568. [61]LIU X H,HAN Z Z,WEN X,et al.L2g auto-encoder:Understanding point clouds by local-to-global reconstruction with hie-rarchical self-attention[C]//Proceedings of the ACM International Conference on Multimedia(ACMMM).2019:989-997. [62]CHEN H L,LUO S T,GAO X,et al.Unsupervised learning of geometric sampling invariant representations for 3d point clouds[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops(ICCVW).2021:893-903. [63]ZHAO Y F,HUI L,XIE J.Sspu-net:Self-supervised point cloud upsampling via differentiable rendering[C]//Proceedings of the ACM International Conference on Multimedia(ACMMM).2021:2214-2223. [64]LIU X H,LIU X C,HAN Z Z,et al.Spu-net:Self-supervised point cloud upsampling by coarse-to-fine reconstruction with self-projection optimization[J].IEEE Transactions on Image Processing,2022,31:4213-4226. [65]ZHANG C,SHI J,DENG X,et al.Upsampling autoencoder for self-supervised point cloud learning[J].arXiv:2203.10768,2022. [66]ZHAO W B,LIU X M,ZHONG Z W,et al.Self-supervised arbitrary-scale point clouds upsampling via implicit neural representation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2022:1999-2007. [67]ZHAO W B,LIU X M,ZHAI D M,et al.Self-supervised arbitrary-scale implicit point clouds upsampling[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,45(10):12394-12407. [68]ZHANG P P,WANG X,MA L,et al.Progressive point cloud upsampling via differentiable rendering[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(12):4673-4685. [69]BAI Y C,WANG X G,JR M H A,et al.Bims-pu:Bi-directional and multi-scale point cloud upsampling[J].IEEE Robotics and Automation Letters,2022,7(3):7447-7454. [70]LIU Z S,WANG Z J,JIA Z.Arbitrary point cloud upsampling via dual back-projection network[J].arXiv:2307.08992,2023. [71]QIAN Y,HOU J H,KWONG S,et al.Deep magnification-flexible upsampling over 3d point clouds[J].IEEE Transactions on Image Processing,2021,30:8354-8367. [72]YE S Q,CHEN D D,HAN S F,et al.Meta-pu:An arbitrary-scale upsampling network for point cloud[J].IEEE Transactions on Visualization and Computer Graphics,2022,28(9):3206-3218. [73]HE Y,TANG D H,ZHANG Y D,et al.Grad-pu:Arbitrary-scale point cloud upsampling via gradient descent with learned distance functions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2023:5354-5363. [74]ZHONG F,BAI Z Y.Psr-gat:Arbitrary point cloud super-resolution using graph attention networks[J].Multimedia Tools and Applications,2023,83:26213-26232. [75]DELL’EVA A,ORSINGHER M,BERTOZZI M.Arbitrarypoint cloud upsampling with spherical mixture of gaussians[C]//Proceedings of the International Conference on 3D Vision(3DV).2022:465-474. [76]HEIMANN V,SPRUCK A,KAUP A.Frequency-selective geometry upsampling of point clouds[C]//Proceedings of the IEEE International Conference on Image Processing(ICIP).2022:1511-1515. [77]FENG W Q,LI J,CAI H R,et al.Neural points:Pointcloud representation with neural fields[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2022:18633-18642. [78]DINESH C,CHEUNG G,BAJIC' I V.3D point cloud super-resolution via graph total variation on surface normals[C]//Proceedings of the IEEE International Conference on Image Processing(ICIP).2019:4390-4394. [79]QIAN Y,HOU J H,KWONG S,et al.Pugeo-net:A geometry-centric network for 3d point cloud upsampling[C]//Proceedings of the European Conference on Computer Vision(ECCV).2020:1-17. [80]SHARMA R,SCHWANDT T,KUNERT C,et al.Point cloud upsampling and normal estimation using deep learning for robust surface reconstruction[C]//Proceedings of the International Joint Conference on Computer Vision,Imaging and Computer Graphics Theory and Applications(VISIGRAPP).2021:70-79. [81]ARSHAD M S,BEKSI W J.A progressive conditional generative adversarial network for generating dense and colored 3d point clouds[C]//Proceedings of the International Conference on 3D Vision(3DV).2020:712-722. [82]NAIK S,MUDENAGUDI U,TABIB R,et al.Featurenet:Upsampling of point cloud and it’s associated features[C]//Proceedings of the Special Interest Group for Computer Graphics(SIGGRAPH).2020. [83]DINESH C,CHEUNG G,BAJIC' I V.Super-resolution of 3d color point clouds via fast graph total variation[C]//Procee-dings of the IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).2020. [84]HEIMANN V,SPRUCK A,KAUP A.Frequency-selectivemesh-to-mesh resampling for color upsampling of point clouds[C]//Proceedings of the IEEE International Workshop on Multimedia Signal Processing(MMSP).2021. [85]KIM B,HAN S,YI E,et al.3D point cloud upsampling and colorization using gan[C]//Proceedings of the International Confe-rence on Multi-disciplinary Trends in Artificial Intelligence(MIWAI).2021:1-17. [86]BORGES T M,GARCIA D C,QUEIROZ R L.Fractional super-resolution of voxelized point clouds[J].IEEE Transactions on Image Processing,2022,31:1380-1390. [87]GRAZIOSI D B,NAKAGAMI O,KUMA S,et al.An overview of ongoing point cloud compression standardization activities:Video-based(V-PCC)and geometry-based(GPCC)[J].APSIPA Transactions on Signal and Information Processing,2020,9(1):1-17. [88]WANG L D,HAJIESMAILI M,CHAKARESKI J,et al.Cu-net:Real-time high-fidelity color upsampling for point clouds[J].arXiv:2209.06112,2022. [89]HEIMANN V,SPRUCK A,KAUP A.Joint geometry and at-tribute upsampling of point clouds using frequency-selective models with overlapped support[J].arXiv:2301.11630,2023. [90]NGUYEN N H T,PERRY S,BONE D,et al.Combination of images and point clouds in a generative adversarial network for upsampling crack point clouds[J].IEEE Access,2022,10:67198-67209. [91]CHEN T,HSIAO C,CHENG W H,et al.Denser:Density-imbalance-eased representation for lidar-based whole scene upsampling[C]//Proceedings of the International Conference on Vi-sual Communications and Image Processing(VCIP).2021:1-5. [92]CHEN T,HSIAO C,HUANG C C.Density-imbalance-eased lidar point cloud upsampling via feature consistency learning[J].IEEE Transactions on Intelligent Vehicles,2023,8(4):2875-2887. [93]SAVKIN A,WANG Y D,WIRKERT S,et al.Lidar upsampling with sliced wasserstein distance[J].arXiv:2301.13558,2023. [94]YAO Y K,FATHOLAHI S,CHEN Y P,et al.Indoor lidarpoint clouds upsampling for object detection enhancement[C]//Proceedings of the Joint Urban Remote Sensing Event(JURSE).2023. [95]SHAN T X,WANG J K,CHEN F F,et al.Simulation-based lidar super-resolution for ground vehicles[J].Robotics and Autonomous Systems,2020,134:103647. [96]ESKANDAR G,PALANISWAMY J,GUIRGUIS K,et al.Glpu:A geometric approach for lidar pointcloud upsampling[J].arXiv:2202.03901,2021. [97]JUNG Y,SEO S W,KIM S W.Fast point clouds upsampling with uncertainty quantification for autonomous vehicles[C]//Proceedings of the IEEE International Conference on Robotics and Automation(ICRA).2022:7776-7782. [98]MOYNIHAN M,PAGÉS R,SMOLIC A.Spatio-temporal up-sampling for free viewpoint video point clouds[C]//Proceedings of the International Joint Conference on Computer Vision,Imaging and Computer Graphics Theory and Applications(VISAPP).2019. [99]WANG K,SHENG L,GU S H,et al.Sequential point cloud upsampling by exploiting multi-scale temporal dependency[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31(12),4686-4696. [100]WANG K,SHENG L,GU S H,et al.Vpu:A video-based point cloud upsampling framework[J].IEEE Transactions on Image Processing,2022,31:4062-4075. [101]LI Z J,LI T Q,FARIMANI A B.Tpu-gan:Learning temporal coherence from dynamic point cloud sequences[C]//Proceedings of the International Conference on Learning Representations.2022:1-21. [102]BERLINCIONI L,BERTINI M,BERRETTI S,et al.4Dsr-gcn:4D video point cloud upsampling using graph convolutional networks[J].arXiv:2306.01081,2023. [103]ARMENI I,SENER O,ZAMIR A R,et al.3D semantic parsing of large-scale indoor spaces[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2016:1534-1543. [104]UY M A,PHAM Q H,HUA B S,et al.Revisiting point cloud classification:A new benchmark dataset and classification model on real-world data[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV).2019:1588-1597. [105]NOURI A,CHARRIER C,LÉZORAY O.Technical report:Greyc 3d colored mesh database[R].Normandie Université,2017. [106]KRIVOKUC'A M,CHOU P A,SAVILL P.8i voxelized surface light field(8ivslf)dataset[S].ISO/IEC JTC1/SC29 WG11(MPEG)input document m42914,Ljubljana,2018. [107]PONS-MOLL G,ROMERO J,MAHMOOD N,et al.Dyna:A model of dynamic human shape in motion[J].ACM Transactions on Graphics,2015,34(4):120:1-120:14. [108]RANJAN A,BOLKART T,SANYAL S,et al.Generating 3dfaces using convolutional mesh autoencoders[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:704-720. [109]CHANG A X,FUNKHOUSER T,GUIBAS L,et al.Shapenet:An information-rich 3d model repository[J].arXiv:1512.03012,2015. [110]CORSINI M,CIGNONI P,SCOPIGNO R.Efficient and flexible sampling with blue noise properties of triangular meshes[J].IEEE Transactions on Visualization and Computer Graphics,2012,18(6):914-924. [111]FAN H Q,SU H,GUIBAS L.A point set generation network for 3d object reconstruction from a single image[C]//Procee-dings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2017:605-613. [112]LIU M H,SHENG L,YANG S,et al.Morphing and sampling network for dense point cloud completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence(AAAI).2020:11597-11603. [113]MATTHEW B,LEVINE J A,NONATO L G,et al.A benchmark for surface reconstruction[J].ACM Transactions on Graphics,2013,32:1-17. [114]TIAN D,OCHIMIZU H,FENG C,et al.Geometric distortionmetrics for point cloud compression[C]//Proceedings IEEE International Conference on Image Processing(ICIP).2017:3460-3464. [115]ALEXIOU E,EBRAHIMI T.Towards a point cloud structural similarity metric[C]//2020 IEEE International Conference on Multimedia and Expo Workshops.2020. [116]XIANG T G,ZHANG C Y,SONG Y,YU J H,CAI W D.Walk in the cloud:Learning curves for point clouds shape analysis[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV).2021:915-924. [117]WU Z R,SONG S R,KHOSLA A,et al.3d shapenets:A deep representation for volumetric shapes[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2015:1912-1920. [118]SON H,KIM Y M.Saum:Symmetry-aware upsampling module for consistent point cloud completion[C]//Proceedings of the Asian Conference on Computer Vision(ACCV).2020:1-17. [119]ZHAO Y F,XIE J,QIAN J J,et al.Pui-net:A point cloud upsampling and inpainting network[C]//Proceedings of the Chinese Conference on Pattern Recognition and Computer Vision(PRCV).2020:328-340. [120]ZHOU H,CHEN K J,ZHANG W M,et al.Dup-net:Denoiser and upsampler network for 3d adversarial point clouds defense[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV).2019:1961-1970. [121]LI J W,HUANG Y N,LEI Y Q.Self-supervised point cloudlearning in few-shot scenario by point up-sampling and mutual information neural estimation[C]//Proceedings of the International Conference on Computer and Communication Systems(ICCCS).2022:304-309. [122]MANDIKAL P,BABU R V.Dense 3d point cloud reconstruction using a deep pyramid network[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision(WACV).2019:1052-1060. [123]REN S Y,HOU J H,CHEN X D,et al.Geoudf:Surface reconstruction from 3d point clouds via geometry-guided distance representation[J].arXiv:2211.16762,2023. [124]CROITORU F A,HONDRU V,IONESCU R T,et al.Diffusion models in vision:A survey[J].arXiv:2209.04747,2022. [125]LUO S T,HU W.Diffusion probabilistic models for 3d point cloud generation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2021:2837-2845. [126]ZHOU L Q,DU Y L,WU J J.3D shape generation and completion through point-voxel diffusion[C]//Proceedings of the IEEE International Conference on Computer Vision(ICCV).2021:5826-5835. [127]LYU Z Y,KONG Z F,XU X D,et al.A conditional point diffusion-refinement paradigm for 3d point cloud completion[C]//Proceedings of the International Conference on Learning Representations(ICLR).2021. [128]WU L M,WANG D L,GONG C Y,et al.Fast point cloud ge-neration with straight flows[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2023:9445-9454. [129]MELAS-KYRIAZI L,RUPPRECHT C,VEDALDI A.Pc2:Projection-conditioned point cloud diffusion for single-imag.e 3d reconstruction[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2023:12923-12932. [130]ZHANG K,ZHOU H,ZHANG J,et al.Ada3diff:Defendingagainst 3d adversarial point clouds via adaptive diffusion[J].ar-Xiv:2211.16247,2022. [131]GUAN T R,MUTHUSELVAM A,HOOVER M,et al.Crossloc3d:Aerial-ground cross-source 3d place recognition[J].ar-Xiv:2303.17778,2023. |
[1] | XU Xiaohua, ZHOU Zhangbing, HU Zhongxu, LIN Shixun, YU Zhenjie. Lightweight Deep Neural Network Models for Edge Intelligence:A Survey [J]. Computer Science, 2024, 51(7): 257-271. |
[2] | LI Wenting, XIAO Rong, YANG Xiao. Improving Transferability of Adversarial Samples Through Laplacian Smoothing Gradient [J]. Computer Science, 2024, 51(6A): 230800025-6. |
[3] | CHEN Wenzhong, CHEN Hongmei, ZHOU Lihua, FANG Yuan. Time-aware Pre-training Method for Sequence Recommendation [J]. Computer Science, 2024, 51(5): 45-53. |
[4] | LI Xiang, FAN Zhiguang, LIN Nan, CAO Yangjie, LI Xuexiang. Self-supervised Learning for 3D Real-scenes Question Answering [J]. Computer Science, 2023, 50(9): 220-226. |
[5] | ZENG Wu, MAO Guojun. Few-shot Learning Method Based on Multi-graph Feature Aggregation [J]. Computer Science, 2023, 50(6A): 220400029-10. |
[6] | ZHU Lei, WANG Shanmin, LIU Qingshan. Self-supervised 3D Face Reconstruction Based on Detailed Face Mask [J]. Computer Science, 2023, 50(2): 214-220. |
[7] | WANG Pengyu, TAI Wenxin, LIU Fang, ZHONG Ting, LUO Xucheng, ZHOU Fan. Self-supervised Flight Trajectory Prediction Based on Data Augmentation [J]. Computer Science, 2023, 50(2): 130-137. |
[8] | REN Shuyao, SONG Jiangling, ZHANG Rui. Early Screening Method for Depression Based on EEG Signal [J]. Computer Science, 2023, 50(11A): 221100139-6. |
[9] | DU Hang-yuan, LI Duo, WANG Wen-jian. Method for Abnormal Users Detection Oriented to E-commerce Network [J]. Computer Science, 2022, 49(7): 170-178. |
[10] | QIAN Dong-wei, CUI Yang-guang, WEI Tong-quan. Secondary Modeling of Pollutant Concentration Prediction Based on Deep Neural Networks with Federal Learning [J]. Computer Science, 2022, 49(11A): 211200084-5. |
[11] | MIAO Zhuang, WANG Ya-peng, LI Yang, WANG Jia-bao, ZHANG Rui, ZHAO Xin-xin. Robust Hash Learning Method Based on Dual-teacher Self-supervised Distillation [J]. Computer Science, 2022, 49(10): 159-168. |
[12] | FAN Hong-jie, LI Xue-dong, YE Song-tao. Aided Disease Diagnosis Method for EMR Semantic Analysis [J]. Computer Science, 2022, 49(1): 153-158. |
[13] | TIAN Song-wang, LIN Su-zhen, YANG Bo. Multi-band Image Self-supervised Fusion Method Based on Multi-discriminator [J]. Computer Science, 2021, 48(8): 185-190. |
[14] | ZHOU Xin, LIU Shuo-di, PAN Wei, CHEN Yuan-yuan. Vehicle Color Recognition in Natural Traffic Scene [J]. Computer Science, 2021, 48(6A): 15-20. |
[15] | XIAO Rui, JIANG Jia-qi, ZHANG Yun-chun. Study on Semantic Topology and Supervised Word Sense Disambiguation of Polysemous Words [J]. Computer Science, 2019, 46(11A): 13-18. |
|