Computer Science ›› 2024, Vol. 51 ›› Issue (7): 257-271.doi: 10.11896/jsjkx.240100045
• Artificial Intelligence • Previous Articles Next Articles
XU Xiaohua1,2, ZHOU Zhangbing1, HU Zhongxu2, LIN Shixun2, YU Zhenjie1,3
CLC Number:
[1]LEI B,ZHOU J,MA M,et al.DQN based Blockchain Data Sto-rage in Resource-constrained IoT System[C]//2023 IEEE Wireless Communications and Networking Conference(WCNC).IEEE,2023:1-6. [2]CAO K,LIU Y,MENG G,et al.An overview on edge compu-ting research[J].IEEE Access,2020,8:85714-85728. [3]GHAZNAVI M,JALALPOUR E,SALAHUDDIN M A,et al.Content delivery network security:A survey[J].IEEE Communications Surveys & Tutorials,2021,23(4):2166-2190. [4]DAS R,INUWA M M.A review on fog computing:issues,cha-racteristics,challenges,and potential applications[J].Telematics and Informatics Reports,2023,10(1):1-20. [5]BABAR M,KHAN M S,ALI F,et al.Cloudlet computing:re-cent advances,taxonomy,and challenges[J].IEEE Access,2021,9:29609-29622. [6]ZHENG F,ZHU D W,ZANG W Q,et al.Edge Computing:Review and Application Research on New Computing Paradigm[J].Journal of Frontiers of Computer Science and Technology,2020,14(4):541-553. [7]SHI W,CAO J,ZHANG Q,et al.Edge computing:Vision and challenges[J].IEEE Internet of Things Journal,2016,3(5):637-646. [8]ZHANG X,WANG Y,LU S,et al.OpenEI:An open frameworkfor edge intelligence[C]//2019 IEEE 39th International Confe-rence on Distributed Computing Systems(ICDCS).IEEE,2019:1840-1851. [9]ZHOU Z,CHEN X,LI E,et al.Edge intelligence:Paving the last mile of artificial intelligence with edge computing[J].Proceedings of the IEEE,2019,107(8):1738-1762. [10]DENG S,ZHAO H,FANG W,et al.Edge intelligence:The confluence of edge computing and artificial intelligence[J].IEEE Internet of Things Journal,2020,7(8):7457-7469. [11]SUBHASHINI R,KHANG A.The role of Internet of Things(IoT) in smart city framework[M]//Smart Cities.CRC Press,2023:31-56. [12]SINGH A,SAINI K,NAGAR V,et al.Artificial intelligence in edge devices[M]//Advances in Computers.Elsevier,2022,127:437-484. [13]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.ImageNetclassification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [14]SUBRAMANIAN M,LV N P,VE S.Hyperparameter optimization for transfer learning of VGG16 for disease identification in corn leaves using Bayesian optimization[J].Big Data,2022,10(3):215-229. [15]JAWOREK-KORJAKOWSKA J,KLECZEK P,GORGON M.Melanoma Thickness Prediction Based on Convolutional Neural Network With VGG-19 Model Transfer Learning[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).IEEE Computer Society,2019:2748-2756. [16]SHAFIQ M,GU Z.Deep residual learning for image recognition:A survey[J].Applied Sciences,2022,12(18):8972. [17]PANDA M K,SUBUDHI B N,VEERAKUMAR T,et al.Modified ResNet-152 Network With Hybrid Pyramidal Pooling for Local Change Detection[J].IEEE Transactions on Artificial Intelligence,2023,1(1):1-14. [18]YANG Z,ZHANG H.Comparative Analysis of StructuredPruning and Unstructured Pruning[C]//International Confe-rence on Frontier Computing.Singapore:Springer Nature Singapore,2021:882-889. [19]HAN S,MAO H,DALLY W J.Deep compression:Compressing deep neural networks with pruning,trained quantization and huffman coding[J].arXiv:1510.00149,2015. [20]MOLCHANOV P,TYREE S,KARRAS T,et al.Pruning con-volutional neural networks for resource efficient inference[J].arXiv:1611.06440,2016. [21]DONG X,YANG Y.Network Pruning via Transformable Architecture Search[J].arXiv:1905.09717,2019. [22]SAKAI Y,ETO Y,TERANISHI Y.Structured pruning for deep neural networks with adaptive pruning rate derivation based on connection sensitivity and loss function[J].Journal of Advances in Information Technology,2022,13(3):295-300. [23]CHOI Y,EL-KHAMY M,LEE J.Compression of deep convolutional neural networks under joint sparsity constraints[J].ar-Xiv:1805.08303,2018. [24]WANG M,TANG J,ZHAO H,et al.Automatic Compression of Neural Network with Deep Reinforcement Learning Based on Proximal Gradient Method[J].Mathematics,2023,11(2):338. [25]ZHAO R,LUK W.Efficient Structured Pruning and Architec-ture Searching for Group Convolution[C]//IEEE/CVF International Conference on Computer Vision Workshop(ICCVW 2019).IEEE Computer Society,2019:1961-1970. [26]XU K,WANG Z,GENG X,et al.Efficient joint optimization of layer-adaptive weight pruning in deep neural networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:17447-17457. [27]ANWAR S,HWANG K,SUNG W.Structured pruning of deep convolutional neural networks[J].ACM Journal on Emerging Technologies in Computing Systems(JETC),2017,13(3):1-18. [28]LOUATI H,LOUATI A,BECHIKH S,et al.Embedding channel pruning within the CNN architecture design using a bi-level evolutionary approach[J].The Journal of Supercomputing,2023,79(14):16118-16151. [29]XIA M,ZHONG Z,CHEN D.Structured pruning learns compact and accurate models[J].arXiv:2204.00408,2022. [30]ECCLES B J,RODGERS P,KILPATRICK P,et al.DNNShif-ter:An efficient DNN pruning system for edge computing[J].Future Generation Computer Systems,2024,152:43-54. [31]SUN X,SHI H.Towards Better Structured Pruning Saliency by Reorganizing Convolution[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2024:2204-2214. [32]QIAN Y,HUANG W,YU Q,et al.Robust Filter PruningGuided by Deep Frequency-Features for Edge Intelligence[J/OL].https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4691079. [33]BASHAS H S,FARAZUDDIN M,PULABAIGARI V,et al.Deep model compression based on the training history[J].Neurocomputing,2024,573:127257. [34]KIM S,HOOPER C,WATTANAWONG T,et al.Full stack optimization of transformer inference:a survey[J].arXiv:2302.14017,2023. [35]RASTEGARI M,ORDONEZ V,REDMON J,et al.Xnor-net:Imagenet classification using binary convolutional neural networks[C]//European Conference on Computer Vision.Cham:Springer International Publishing,2016:525-542. [36]VORABBI L,MALTONI D,SANTI S.On-Device Learningwith Binary Neural Networks[C]//International Conference on Image Analysis and Processing.Cham:Springer Nature Switzer-land,2023:39-50. [37]LIU B,LI F,WANG X,et al.Ternary weight networks[C]//2023 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2023).IEEE,2023:1-5. [38]RAZANI R,MORIN G,SARI E,et al.Adaptive binary-ternary quantization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:4613-4618. [39]CHEN W,QIU H,ZHUANG J,et al.Quantization of deep neural networks for accurate edge computing[J].ACM Journal on Emerging Technologies in Computing Systems(JETC),2021,17(4):1-11. [40]TMAMNA J,AYED E B,FOURATIR,et al.Bare-Bones particle Swarm optimization-based quantization for fast and energy efficient convolutional neural networks[J].Expert Systems,2023(12):1. [41]SCHAEFER C J S,JOSHI S,LI S,et al.Edge inference with fully differentiable quantized mixed precision neural networks[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2024:8460-8469. [42]ZHANG H,YAO B,SHAO W,et al.Mixed Precision Quantized Neural Network Accelerator for Remote Sensing Images Classification[C]//2023 IEEE 16th International Conference on Electronic Measurement & Instruments(ICEMI).IEEE,2023:172-176. [43]LI B,WANG L,WANG Y,et al.Mixed-Precision NetworkQuantization for Infrared Small Target Segmentation[J].IEEE Transactions on Geoscience and Remote Sensing,2024,62:3346904. [44]WANG Y Z,GUO B,WANG H L,et al.Adaptive ModelQuantization Method for Intelligent Internet of Things Terminal[J].Computer Science,2023,50(11):306-316. [45]HUANG C,LIU P,FANG L.MXQN:Mixed quantization for reducing bit-width of weights and activations in deep convolutional neural networks[J].Applied Intelligence,2021,51:4561-4574. [46]KUNDU S,WANG S,SUN Q,et al.Bmpq:bit-gradient sensitivity-driven mixed-precision quantization of dnns from scratch[C]//2022 Design,Automation & Test in Europe Conference & Exhibition(DATE).IEEE,2022:588-591. [47]LOUIZOS C,REISSER M,BLANKEVOORT T,et al.Relaxed quantization for discretized neural networks[J].arXiv:1810.01875,2018. [48]LANE N D,BHATTACHARYA S,GEORGIEV P,et al.Deepx:A software accelerator for low-power deep learning inference on mobile devices[C]//2016 15th ACM/IEEE International Conference on Information Processing in Sensor Networks(IPSN).IEEE,2016:1-12. [49]FANG S,KIRBY R M,Zhe S.Bayesian streaming sparse Tucker decomposition[C]//Uncertainty in Artificial Intelligence.PMLR,2021:558-567. [50]ERICHSON N B,MANOHAR K,BRUNTON S L,et al.Ran-domized CP tensor decomposition[J].Machine Learning:Science and Technology,2020,1(2):025012. [51]SWAMINATHAN S,GARG D,KANNAN R,et al.Sparse low rank factorization for deep neural network compression[J].Neurocomputing,2020,398:185-196. [52]BAO X,LIANG J,XIA Y,et al.Low-rank decomposition fabric defect detection based on prior and total variation regularization[J].The Visual Computer,2022,38(8):2707-2721. [53]CHENG T,TONG X,ZHANG Y,et al.Convolutional neuralnetworks with low-rank regularization[J].arXiv:1511.06067,2015. [54]XIAO J,ZHANG C,GONG Y,et al.HALOC:Hardware-Aware Automatic Low-Rank Compression for Compact Neural Networks[J].arXiv:2301.09422,2023. [55]IDELBAYEV Y,CARREIRA-PERPINáN M A.Low-rank compression of neural nets:Learning the rank of each layer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:8049-8059. [56]MENG X F,LIU F,LI G,et al.Review of Knowledge Distillation in Convolutional Neural Network Compression[J].Journal of Frontiers of Computer Science and Technology,2021,15(10):1812-1829. [57]GENG L L,NIU B N.Survey of Deep Neural Networks Model Compression[J].Journal of Frontiers of Computer Science and Technology,2020,14(9):1441-1455. [58]SI Z F,QI H G.Survey on knowledge distillation and its application[J].Journal of Image and Graphics,2023,28(9):2817-2832. [59]HINTON G,VINYALS O,DEAN J.Distilling the knowledge in a neural network[J].arXiv:1503.02531,2015. [60]ROMERO A,BALLAS N,KAHOU S E,et al.Fitnets:Hintsfor thin deep nets[J].arXiv:1412.6550,2014. [61]ZAGORUYKO S,KOMODAKIS N.Paying more attention toattention:Improving the performance of convolutional neural networks via attention transfer[J].arXiv:1612.03928,2016. [62]ZHANG H L,CHEN D F,WANG C.Confidence-aware multi-teacher knowledge distillation[C] //IEEE International Confe-rence on Acoustics,Speech and Signal Processing(ICASSP 2022).IEEE,2022. [63]CHOI J,CHO H,CHEUNG S,et al.ORC:Network group-based knowledge distillation using online role change[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:17381-17390. [64]QIAN Y G,MA J,HE N N,et al.Two-stage AdversarialKnowledge Transfer for Edge Intelligence[J].Journal of Software,2022,33(12):4504-4516. [65]MISHRA R,GUPTA H P.Designing and training of light-weight neural networks on edge devices using early halting in knowledge distillation[J].IEEE Transactions on Mobile Computing,2024(25):4665-4677. [66]GOU J,HU Y,SUN L,et al.Collaborative knowledge distillation via filter knowledge transfer[J].Expert Systems with Applications,2024,238:121884. [67]LI T,LI J,LIU Z,et al.Few sample knowledge distillation for efficient network compression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:14639-14647. [68]PHAM C,NGUYEN V A,LE T,et al.Frequency Attention forKnowledge Distillation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2024:2277-2286. [69]ZHANG Y,XIANG T,HOSPEDALES T M,et al.Deep mutual learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4320-4328. [70]HUANG Z H,YANG X Y,YU J,et al.Mutual LearningKnowledge Distillation Based on Multi-stage Multi-generative Adversarial Network[J].Computer Science,2022,49(10):169-175. [71]MIRZADEH S I,FARAJTABAR M,LI A,et al.Improvedknowledge distillation via teacher assistant[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:5191-5198. [72]KWON S J,LEE D,KIM B,et al.Structured compression by weight encryption for unstructured pruning and quantization[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:1909-1918. [73]QU X,WANG J,XIAO J.Quantization and knowledge distil-lation for efficient federated learning on edge devices[C]//2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Confe-rence on Smart City;IEEE 6th International Conference on Data Science and Systems(HPCC/SmartCity/DSS).IEEE,2020:967-972. [74]CHANG W T,KUO C H,FANG L C.Variational Channel Distribution Pruning and Mixed-Precision Quantization for Neural Network Model Compression[C]//2022 International Sympo-sium on VLSI Design,Automation and Test(VLSI-DAT).IEEE,2022:1-3. [75]BAI S,CHEN J,SHEN X,et al.Unified Data-Free Compression:Pruning and Quantization without Fine-Tuning[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:5876-5885. [76]WANG W,ZHOU X,JIANG C,et al.A Lightweight Identifica-tion Method for Complex Power Industry Tasks Based on Knowledge Distillation and Network Pruning[J].Processes,2023,11(9):2780. [77]YU P H,WU S S,KLOPP J P,et al.Joint pruning & quantiza-tion for extremely sparse neural networks[J].arXiv:2010.01892,2020. [78]KIM J,CHANG S,KWAK N.PQK:model compression viapruning,quantization,and knowledge distillation[J].arXiv:2106.14681,2021. [79]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2012(25):1-9. [80]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [81]FANG L L,WANG X.Brain tumor segmentation based on thedual-path network of multi-modal MRI images[J].Pattern Re-cognition,2022(124):108434. [82]LI D C,LI L,CHEN Z Z,et al.Shift-ConvNets:Small Convolutional Kernel with Large Kernel Effects[J].arXiv:2401.12736,2024. [83]RONG Y Y,WU X,ZHANG Y M.Classification of motorimagery electroencephalography signals using continuous small convolutional neural network[J].International Journal of Imaging Systems and Technology,2020,30(3):653-659. [84]IANDOLA F N,HAN S,MOSKEWICZ M W,et al.Sque-ezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[J].arXiv:1602.07360,2016. [85]LI,X,LONG R J,YAN J,et al.TANet:a tiny plankton classification network formobile devices[J].Mobile Information Systems,2019(3):1-8. [86]KATHIRGAMARAJA P,KAMALAKKANNAN K,RATNA-SEGAR N,et al.Edgenet:Squeezenet like convolution neural network on embedded fpga[C]//2018 25th IEEE International Conference on Electronics,Circuits and Systems(ICECS).IEEE,2018:81-84. [87]MINU S,SUBASHKA R.Optimal Squeeze Net with Deep Neural Network-Based Arial Image Classification Model in Unmanned Ae-rial Vehicles[J].Traitement duSignal,2022,39(1):275-281. [88]HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:Efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [89]SANDLER M,HOWARD A,ZHU M,et al.Mobilenetv2:In-verted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4510-4520. [90]KOONCE B,KOONCE B.MobileNetV3[J].Convolutional Neural Networks with Swift for Tensorflow:Image Recognition and Dataset Categorization,2021(5):125-144. [91]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [92]CHOLLET F.XCEPTION:Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1251-1258. [93]GHOLAMI A,KWON K,WU B,et al.Squeezenext:Hardware-aware neural network design[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition workshops.2018:1638-1647. [94]FREEMAN I,ROESE-KOERNER L,KUMMERT A.Effnet:An efficient structure for convolutional neural networks[C]//2018 25thIEEE International Conference on Image Processing(ICIP).IEEE,2018:6-10. [95]ZHANG X,ZHOU X,LIN M,et al.Shufflenet:An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:6848-6856. [96]XIE S,GIRSHICK R,DOLLÁR P,et al.Aggregated residualtransformations for deep neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1492-1500. [97]SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:1-9. [98]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [99]HE K,ZHANG X,REN S,et al.Identity mappings in deep re-sidual networks[C]//Computer Vision-ECCV 2016:14th European Conference,Amsterdam Springer International Publi-shing,2016:630-645. [100]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826. [101]MA N,ZHANG X,ZHENG H T,et al.Shufflenet v2:Practical guidelines for efficient cnn architecture design[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:116-131. [102]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19. [103]WANG Q,WU B,ZHU P,et al.ECA-Net:Efficient channel attention for deep convolutional neural networks[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11534-11542. [104]ZHANG F,LI D,LI S,et al.A Lightweight Tire Tread Image Classification Network[C]//2022 IEEE International Confe-rence on Visual Communications and Image Processing(VCIP).IEEE,2022:1-5. [105]BASHA S H S,GOWDA S N,DAKALA J.A simple hybrid fil-ter pruning for efficient edge inference[C]//2022 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP 2022).IEEE,2022:3398-3402. |
[1] | HAN Bing, DENG Lixiang, ZHENG Yi, REN Shuang. Survey of 3D Point Clouds Upsampling Methods [J]. Computer Science, 2024, 51(7): 167-196. |
[2] | GAO Yang, CAO Yangjie, DUAN Pengsong. Lightweighting Methods for Neural Network Models:A Review [J]. Computer Science, 2024, 51(6A): 230600137-11. |
[3] | LI Wenting, XIAO Rong, YANG Xiao. Improving Transferability of Adversarial Samples Through Laplacian Smoothing Gradient [J]. Computer Science, 2024, 51(6A): 230800025-6. |
[4] | LI Le, LIU Meifang, CHEN Rong, WEI Siyu. Study on Collaborative Control Method of Vehicle Platooning Based on Edge Intelligence [J]. Computer Science, 2024, 51(6): 384-390. |
[5] | SUN Jing, WANG Xiaoxia. Convolutional Neural Network Model Compression Method Based on Cloud Edge Collaborative Subclass Distillation [J]. Computer Science, 2024, 51(5): 313-320. |
[6] | LU Yanfeng, WU Tao, LIU Chunsheng, YAN Kang, QU Yuben. Survey of UAV-assisted Energy-Efficient Edge Federated Learning [J]. Computer Science, 2024, 51(4): 270-279. |
[7] | LIU Yubo, GUO Bin, MA Ke, QIU Chen, LIU Sicong. Design of Visual Context-driven Interactive Bot System [J]. Computer Science, 2023, 50(9): 260-268. |
[8] | Yifei ZOU, Senmao QI, Cong'an XU, Dongxiao YU. Distributed Weighted Data Aggregation Algorithm in End-to-Edge Communication Networks Based on Multi-armed Bandit [J]. Computer Science, 2023, 50(2): 13-22. |
[9] | WANG Xiangwei, HAN Rui, Chi Harold LIU. Hierarchical Memory Pool Based Edge Semi-supervised Continual Learning Method [J]. Computer Science, 2023, 50(2): 23-31. |
[10] | LI Xiaohuan, CHEN Bitao, KANG Jiawen, YE Jin. Coalition Game-assisted Joint Resource Optimization for Digital Twin-assisted Edge Intelligence [J]. Computer Science, 2023, 50(2): 42-49. |
[11] | REN Shuyao, SONG Jiangling, ZHANG Rui. Early Screening Method for Depression Based on EEG Signal [J]. Computer Science, 2023, 50(11A): 221100139-6. |
[12] | LIU Xing-guang, ZHOU Li, LIU Yan, ZHANG Xiao-ying, TAN Xiang, WEI Ji-bo. Construction and Distribution Method of REM Based on Edge Intelligence [J]. Computer Science, 2022, 49(9): 236-241. |
[13] | CHU Yu-chun, GONG Hang, Wang Xue-fang, LIU Pei-shun. Study on Knowledge Distillation of Target Detection Algorithm Based on YOLOv4 [J]. Computer Science, 2022, 49(6A): 337-344. |
[14] | CHENG Xiang-ming, DENG Chun-hua. Compression Algorithm of Face Recognition Model Based on Unlabeled Knowledge Distillation [J]. Computer Science, 2022, 49(6): 245-253. |
[15] | ZOU Sai-lan, LI Zhuo, CHEN Xin. Study on Transmission Optimization for Hierarchical Federated Learning [J]. Computer Science, 2022, 49(12): 5-16. |
|