Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 230900155-7.doi: 10.11896/jsjkx.230900155
• Image Processing & Multimedia Technology • Previous Articles Next Articles
CHEN Dong1, ZHOU Hao1, YUAN Guowu1, YANG Lingyu1, CHENG Qiuyan1, REN Ying2, MA Yi2
CLC Number:
[1]Y C L,N X,X H K,et al.Overview of Mountain Fire Monitoring and Early Warning for Power Grid Demand [J/OL].Power System Technology.https://doi.org/10.13335/j.1000-3673.pst.2022.2267. [2]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.Animage is worth 16x16 words:Transformers for image recognition at scale[J].arXiv:2010.11929,2020. [3]REN S,HE K,GIRSHICK R,et al.Faster r-cnn:Towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2016,39(6):1137-1149. [4]LIU W,ANGUELOV D,ERHAN D,et al.Ssd:Single shotmultibox detector[C]//Computer Vision-ECCV 2016:14th European Conference,Amsterdam,The Netherlands,Part I 14.Springer International Publishing,2016:21-37. [5]REDMON J,FARHADI A.Yolov3:An incremental improvement[J].arXiv:1804.02767,2018. [6]BOCHKOVSKIY A,WANG C Y,LIAO H Y M.Yolov4:Optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020. [7]CARION N,MASSA F,SYNNAEVE G,et al.End-to-end object detection with transformers[C]//European Conference on Computer Vision.Cham:Springer International Publishing,2020:213-229. [8]JOCHER G,STOKEN A,BORVEC J,et al.YOLOv5[OL].http://doi.org/10.5281/zenodo.4154370(accessed on 16 November 2020). [9]WANG C Y,LIAO H Y M,WU Y H,et al.CSPNet:A newbackbone that can enhance learning capability of CNN[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2020:390-391. [10]ZHANG D,ZHANG R Z,LONG Y T,et al.Application Status of Remote Sensing Techniques for Wildfire Monitoring Near Transmission Line Corridor [J].WORLD SCI-TECH R&D,2023,45(2):200-209. [11]LI H D,ZHOU K,ZHANG R Z,et al.Technology Scheme on Wildfire Multidimensional Monitoring of Overhead Transmission Line [J].Rural Electrification,2022(10):10-13. [12]FAN G Y,CHEN X H,CHEN M J,et al.Research and application of satellite remote sensing monitoring fire near transmission lines [J].Mineral Exporation,2021,12(8):1844-1851. [13]LEE Y,SHIM J.False positive decremented research for fireand smoke detection in surveillance camera using spatial and temporal features based on deep learning[J].Electronics,2019,8(10):1167. [14]SUN K,ZHAO Q,WANG X.Using knowledge inference tosuppress the lamp disturbance for fire detection[J].Journal of Safety Science and Resilience,2021,2(3):124-130. [15]SZEGEDY C,IOFFE S,VANHOUCKE V,et al.Inception-v4,inception-resnet and the impact of residual connections on lear-ning[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2017. [16]XUE Z,LIN H,WANG F.A small target forest fire detection model based on YOLOv5 improvement[J].Forests,2022,13(8):1332. [17]LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2018:8759-8768. [18]HOU Q,ZHOU D,FENG J.Coordinate attention for efficientmobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:13713-13722. [19]CAI Z,VASCONCELOS N.Cascade r-cnn:Delving into highquality object detection[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2018:6154-6162. [20]GE Z,LIU S,WANG F,et al.Yolox:Exceeding yolo series in 2021[J].arXiv:2107.08430,2021. [21]LI C,LI L,JIANG H,et al.YOLOv6:A single-stage object detection framework for industrial applications[J].arXiv:2209.02976,2022. [22]WANG C Y,BOCHKOVSKIY A,LIAO H Y M.YOLOv7:Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:7464-7475. [23]ZHU X,LYU S,WANG X,et al.TPH-YOLOv5:ImprovedYOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:2778-2788. [24]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988. |
[1] | XU Jinlong, GUI Zhonghua, LI Jia'nan, LI Yingying, HAN Lin. FP8 Quantization and Inference Memory Optimization Based on MLIR [J]. Computer Science, 2024, 51(9): 112-120. |
[2] | HU Pengfei, WANG Youguo, ZHAI Qiqing, YAN Jun, BAI Quan. Night Vehicle Detection Algorithm Based on YOLOv5s and Bistable Stochastic Resonance [J]. Computer Science, 2024, 51(9): 173-181. |
[3] | LI Yuanxin, GUO Zhongfeng, YANG Junlin. Container Lock Hole Recognition Algorithm Based on Lightweight YOLOv5s [J]. Computer Science, 2024, 51(6A): 230900021-6. |
[4] | GAO Nan, ZHANG Lei, LIANG Ronghua, CHEN Peng, FU Zheng. Scene Text Detection Algorithm Based on Feature Enhancement [J]. Computer Science, 2024, 51(6): 256-263. |
[5] | BAI Xuefei, SHEN Wucheng, WANG Wenjian. Salient Object Detection Based on Feature Attention Purification [J]. Computer Science, 2024, 51(5): 125-133. |
[6] | ZHANG Yang, XIA Ying. Object Detection Method with Multi-scale Feature Fusion for Remote Sensing Images [J]. Computer Science, 2024, 51(3): 165-173. |
[7] | CHEN Haiyan, MAO Lihong. Improved Lightweight Aerial Photography Object Detection Model Based on YOLOv5s [J]. Computer Science, 2024, 51(11A): 231100119-8. |
[8] | LI Jun, LIU Nian, ZHANG Shiyi. Study on Detection Method of Bridge Crack Based on YOLOv5 [J]. Computer Science, 2024, 51(11A): 231200063-7. |
[9] | YU Yongbo, SUN Zhen, ZHU Lingxi, LI Qingdang. Improved YOLOv5s Algorithm for Detecting Fireworks in Urban Building Environments [J]. Computer Science, 2024, 51(11A): 240100051-7. |
[10] | XIE Puxuan, CUI Jinrong, ZHAO Min. Electiric Bike Helment Wearing Detection Alogrithm Based on Improved YOLOv5 [J]. Computer Science, 2023, 50(6A): 220500005-6. |
[11] | WU Liuchen, ZHANG Hui, LIU Jiaxuan, ZHAO Chenyang. Defect Detection of Transmission Line Bolt Based on Region Attention Mechanism andMulti-scale Feature Fusion [J]. Computer Science, 2023, 50(6A): 220200096-7. |
[12] | LU Qi, YU Yuanqiang, XU Daoming, ZHANG Qi. Improved YOLOv5 Small Drones Target Detection Algorithm [J]. Computer Science, 2023, 50(11A): 220900050-8. |
[13] | WU Jiaojiao, LIU Zheng. Electrolyzer Equipment and Sample Detection Method Based on Multi-scale Improved YOLOv5 [J]. Computer Science, 2023, 50(11A): 230200163-6. |
[14] | JIANG Bo, WAN Yi, XIE Xianzhong. Improved YOLOv5s Lightweight Steel Surface Defect Detection Model [J]. Computer Science, 2023, 50(11A): 230900113-7. |
[15] | JIANG Ke, SHI Jianqiang, CHEN Guangwu. Railway Track Detection Method Based on Improved YOLOv5s [J]. Computer Science, 2023, 50(11A): 230200101-6. |
|