Computer Science ›› 2024, Vol. 51 ›› Issue (11): 133-147.doi: 10.11896/jsjkx.231000075

• Computer Graphics & Multimedia • Previous Articles     Next Articles

Research Progress of Image 3D Object Detection in Autonomous Driving Scenario

ZHOU Yan1,2, XU Yewen1, PU Lei1, XU Xuemiao2, LIU Xiangyu1, ZHOU Yuexia1   

  1. 1 School of Electronic Information Engineering,Foshan University,Foshan,Guangdong 528000,China
    2 School of Computer Science and Engineering,South China University of Technology,Guangzhou 510641,China
  • Received:2023-10-12 Revised:2024-03-28 Online:2024-11-15 Published:2024-11-06
  • About author:ZHOU Yan,born in 1979,master,professor,master supervisor,is a member of CCF(No.60294M).Her main research interests include machine vision,gra-phics and image processing,and its applications in public safety,intelligent manufacturing and so on.
    XU Yewen,born in 1999,postgraduate.His main research interests include computer vision and 3D object detection.
  • Supported by:
    National Natural Science Foundation of China(61972091),Natural Science Foundation of Guangdong Province,China(2022A1515010101,2021A1515012639),Key Research Project of Universities of Guangdong Province(2020ZDZX3049),Science and Technology Innovation Project of FoShan(2020001003285) and Educational Science Planning Project of Guangdong Province,China(2021GXJK445).

Abstract: 2D object detection techniques have significant limitations when applied to automatic driving scenarios due to the absence of description of the size,depth and other information of the physical environment.Numerous researchers have made extensive explorations in the field of image 3D object detection by aligning with the practical requirements of automatic driving.To conduct a comprehensive study in this domain,this paper reviews recent literature published both domestically and internationally.It introduces two main categories of methods:image-based 3D object detection and 3D object detection by fusing image and point cloud data.Furthermore,it further subdivides these categories based on the different approaches used to process input data by the network.The paper describes representative methods within each category,summarizes the strengths and weaknesses of each method,and conducts a comparative analysis of their performance.Additionally,it provides a detailed introduction to relevant datasets and evaluation metrics for 3D object detection in autonomous driving scenarios.Finally,the paper analyzes the challenges and difficulties in the field of image 3D object detection,and outlines potential future research directions.

Key words: Image 3D object detection, Deep learning, Automatic driving, Multimodal fusion, Computer vision

CLC Number: 

  • TP391
[1] MAO J,SHI S,WANG X,et al.3D Object Detection for Auto-nomous Driving:A Comprehensive Survey[J].arXiv:2206.09474,2022.
[2] GUO G,ZHANG N.A survey on deep learning based face re-cognition[J].Computer Vision and Image Understanding,2019,189:102805.
[3] LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single ShotMultiBox Detector[C]//Proceedings of the 14th European Conference on Computer Vision.Amsterdam:Springer,2016:21-37.
[4] REDMON J,FARHADI A.YOLOv3:An Incremental Improvement[J].arXiv:1804.02767,2018.
[5] BOCHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:Optimal Speed and Accuracy of Object Detection[J].arXiv:2004.10934,2020.
[6] ZHOU Y,TUZEL O.VoxelNet:End-to-End Learning for Point Cloud Based 3D Object Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:4490-4499.
[7] LANG A H,VORA S,CAESAR H,et al.PointPillars:Fast Encoders for Object Detection From Point Clouds[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019:12689-12697.
[8] SHI S,WANG X,LI H.PointRCNN:3D Object Proposal Ge-neration and Detection From Point Cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Visionand Pattern Recognition.Long Beach:IEEE,2019:770-779.
[9] QIAN R,LAI X,LI X.3D Object Detection for AutonomousDriving:A Survey[J].Pattern Recognition,2022,130:108796.
[10] CAO J L,LI Y L,SUN H Q,et al.A Survey on Deep Learning Based Visual Object Detection[J].Journal of Image and Gra-phics,2022,27(6):1697-1722.
[11] ZAMANAKOS G,TSOCHATZIDIS L,AMANATIADIS A,et al.A comprehensive survey of LIDAR-based 3D object detection methods with deep learning for autonomous driving[J].Computers & Graphics,2021,99:153-181.
[12] HUO W L,JING T,REN S.Review of 3D Object Detection forAutonomous Driving[J].Computer Science,2023,50(7):107-118.
[13] GEIGER A,LENZ P,URTASUN R.Are we ready for autonomous driving? the kitti vision benchmark suite[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Providence:IEEE,2012:3354-3361.
[14] CAESAR H,BANKITI V,LANG A H,et al.nuscenes:A multi-modal dataset for autonomous driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:11621-11631.
[15] SUN P,KRETZSCHMAR H,DOTIWALLA X,et al.Scalability in perception for autonomous driving:Waymo open dataset[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:2446-2454.
[16] CHEN X,KUNDU K,ZHU Y,et al.3D Object Proposals for Accurate Object Class Detection[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems,2015:424-432.
[17] GIRSHICK R.Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision.Santiago:IEEE,2015:1440-1448.
[18] CHEN X,KUNDU K,ZHANG Z,et al.Monocular 3D ObjectDetection for Autonomous Driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:2147-2156.
[19] TIAN Z,SHEN C H,CHEN H,et al.FCOS:Fully Convolu-tional One-Stage Object Detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Seoul:IEEE,2019:9626-9635.
[20] WANG T,ZHU X,PANG J,et al.FCOS3D:Fully Convolu-tional One-Stage Monocular 3D Object Detection[C]//Procee-dings of the IEEE/CVF International Conference on Computer Vision Workshops.Montreal:IEEE,2021:913-922.
[21] LIU Z,WU Z,TOTH R.SMOKE:Single-Stage Monocular 3D Object Detection via Keypoint Estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.Seattle:IEEE,2020:4289-4298.
[22] LI P,CHEN X,SHEN S.Stereo R-CNN Based 3D Object Detection for Autonomous Driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019:7636-7644.
[23] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:to-wards real-time object detection with region proposal networks[J].Advances in Neural Information Processing Systems,2015,39(6):1137-1149.
[24] QIN Z,WANG J,LU Y.Triangulation Learning Network:From Monocular to Stereo 3D Object Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019:7607-7615.
[25] SUN J,CHEN L,XIE Y,et al.Disp R-CNN:Stereo 3D ObjectDetection via Shape Prior Guided Instance Disparity Estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:10545-10554.
[26] XU Z,ZHANG W,YE X,et al.ZoomNet:Part-Aware Adaptive Zooming Neural Network for 3D Object Detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence.New York:AAAI,2020:12557-12564.
[27] PENG L,WU X,YANG Z,et al.DID-M3D:Decoupling Instance Depth for Monocular 3D Object Detection[C]//Proceedings of the 17th European Conference on Computer Vision.Tel Aviv:Springer,2022:71-88.
[28] HUANG K C,WU T H,SU H T,et al.MonoDTR:Monocular3D Object Detection with Depth-Aware Transformer[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:4002-4011.
[29] ZHANG R,QIU H,WANG T,et al.Monodetr:Depth-guidedTransformer for Monocular 3D Object Detection[C]//Procee-dings of the IEEE/CVF International Conference on Computer Vision.Paris:IEEE,2023:9155-9166.
[30] NAIDEN A,PAUNESCU V,KIM G,et al.Shift R-CNN:Deep Monocular 3D Object Detection With Closed-Form Geometric Constraints[C]//Proceedings of the IEEE International Confe-rence on Image Processing.Taipei:IEEE,2019:61-65.
[31] CAI Y,LI B,JIAO Z,et al.Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.New York:AAAI,2020:10478-10485.
[32] SHI X,YE Q,CHEN X,et al.Geometry-Based Distance Decomposition for Monocular 3D Object Detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Montreal:IEEE,2021:15152-15161.
[33] GU J,WU B,FAN L,et al.Homography Loss for Monocular 3D Object Detection[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.New Or-leans:IEEE,2022:1070-1079.
[34] WANG T,XINGE Z H U,PANG J,et al.Probabilistic and geometric depth:Detecting objects in perspective[C]//Conference on Robot Learning.New York:PMLR,2022:1475-1485.
[35] MA X,LIU S,XIA Z,et al.Rethinking Pseudo-LiDAR Representation[C]//Proceedings of the 16th European Conference on Computer Vision.Glasgow:Springer,2020:311-327.
[36] WANG Y,CHAO W L,GARG D,et al.Pseudo-LiDAR From Visual Depth Estimation:Bridging the Gap in 3D Object Detection for Autonomous Driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019:8437-8445.
[37] CHEN Y N,DAI H,DING Y.Pseudo-stereo for monocular 3d object detection in autonomous driving[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:887-897.
[38] SIMONELLIA,BULO S R,PORZI L,et al.Disentangling Monocular 3D Object Detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Seoul:IEEE,2019:1991-1999.
[39] MOUSAVIAN A,ANGUELOV D,FLYNN J,et al.3D Bounding Box Estimation Using Deep Learning and Geometry[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:5632-5640.
[40] MA X,ZHANG Y,XU D,et al.Delving into Localization Errors for Monocular 3D Object Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville:IEEE,2021:4719-4728.
[41] LIU X,XUE N,WU T,et al.Learning Auxiliary Monocular Contexts Helps Monocular 3D Object Detection[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.Online:AAAI,2022:1810-1818.
[42] SRIVASTAVA S,JURIE F,SHARMA G.Learning 2D to 3D Lifting for Object Detection in 3D for Autonomous Vehicles[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.Macau:IEEE,2019:4504-4511.
[43] BELTRAN J,GUINDEL C,MORENO F M,et al.BirdNet:A 3D Object Detection Framework from LiDAR Information[C]//Proceedings of the 21st International Conference on Intelligent Transportation Systems.Maui:IEEE,2018:3517-3523.
[44] CHEN X,MA H,WAN J,et al.Multi-View 3D Object Detection Network for Autonomous Driving[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:6526-6534.
[45] READING C,HARAKEH A,CHAE J,et al.Categorical Depth Distribution Network for Monocular 3D Object Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville:IEEE,2021:8551-8560.
[46] RODDICK T,KENDALL A,CIPOLLA R.Orthographic Fea-ture Transform for Monocular 3D Object Detection[J].arXiv:1811.08188,2018.
[47] HUANG J,HUANG G,ZHU Z,et al.BEVDet:High-Perfor-mance Multi-Camera 3D Object Detection in Bird-Eye-View[J].arXiv:2112.11790,2021.
[48] HUANG J,HUANG G.BEVDet4D:Exploit Temporal Cues in Multi-Camera 3D Object Detection[J].arXiv:2203.17054,2022.
[49] LI Y,GE Z,YU G,et al.BevDepth:Acquisition of ReliableDepth for Multi-View 3D Object Detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Washington:AAAI,2023:1477-1485.
[50] LI Z,WANG W,LI H,et al.BEVFormer:Learning Bird’s-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers[C]//European Conference on Computer Vision.Cham:Springer Nature Switzerland,2022:1-18.
[51] LI Y,BAO H,GE Z,et al.BEVStereo:Enhancing Depth Esti-mation in Multi-View 3D Object Detection with Temporal Stereo[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Washington:AAAI,2023:1486-1494.
[52] YANG C,CHEN Y,TIAN H,et al.BEVFormer v2:Adapting Modern Image Backbones to Bird’s-Eye-View Recognition via Perspective Supervision[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Vancouver:IEEE,2023:17830-17839.
[53] CHEN Y,LIU S,SHEN X,et al.DSGN:Deep StereoGeometry Network for 3D Object Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:12533-12542.
[54] CHEN Y,HUANG S,LIU S,et al.DSGN++:Exploiting Vi-sual-Spatial Relation for Stereo-Based 3D Detectors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(4):4416-4429.
[55] XU J,PENG L,CHENG H,et al.MonoNeRD:NeRF-like Representations for Monocular 3D Object Detection[C]//Procee-dings of the IEEE/CVF International Conference on Computer Vision.Paris:IEEE,2023:6814-6824.
[56] ZHOU Z,DU L,YE X,et al.SGM3D:Stereo guided monocular 3D object detection[J].IEEE Robotics and Automation Letters,2022,7(4):10478-10485.
[57] GAO A,PANG Y,NIE J,et al.Esgn:Efficient stereo geometry network for fast 3d object detection[J].IEEE Transactions on Circuits and Systems for Video Technology,2024,34(4):2000-2009.
[58] YOU Y,WANG Y,CHAO W L,et al.Pseudo-LiDAR++:Accurate Depth for 3D Object Detection in Autonomous Driving[J].arXiv:1906.06310,2019.
[59] QIAN R,GARG D,WANG Y,et al.End-to-End Pseudo-LiDARfor Image-Based 3D Object Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:5880-5889.
[60] KIM C,KIM U H,KIM J H.Self-supervised 3D Object Detection from Monocular Pseudo-LiDAR[C]//IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.Bedford:IEEE,2022:1-6.
[61] MENG H,LI C,CHEN G,et al.Efficient 3D Object DetectionBased on Pseudo-LiDAR Representation[J].IEEE Transactions on Intelligent Vehicles,2024,9(1):1953-1964.
[62] SUN C,XU C,FANG W,et al.Monocular 3D Object Detection from Comprehensive Feature Distillation Pseudo-LiDAR[J].IEEE Access,2023,11:98969-98976.
[63] VIANNEY J M U,AICH S,LIU B.RefinedMPL:Refined Monocular Pseudo LiDAR for 3D Object Detection in Autonomous Driving[J].arXiv:1911.09712,2019.
[64] WENG X,KITANI K.Monocular 3D Object Detection withPseudo-LiDAR Point Cloud[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop.Seoul:IEEE,2019:857-866.
[65] MA X,WANG Z,LI H,et al.Accurate Monocular 3D Object Detection via Color-Embedded 3D Reconstruction for Autonomous Driving[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Seoul:IEEE,2019:6850-6859.
[66] LI C Y,KU J,WASLANDER S L.Confidence Guided Stereo 3D Object Detection with Split Depth Estimation[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.Las Vegas:IEEE,2020:5776-5783.
[67] WANG Y,YANG B,HU R,et al.PLUMENet:Efficient 3D Object Detection from Stereo Images[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.Prague:IEEE,2021:3383-3390.
[68] MENG H,LI C,CHEN G,et al.Accurate and Real-Time Pseudo Lidar Detection:Is Stereo Neural Network Really Necessary?[J].arXiv:2206.13858,2022.
[69] KU J,MOZIFIAN M,LEE J,et al.Joint 3D Proposal Genera-tion and Object Detection from View Aggregation[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.Madrid:IEEE,2018:5750-5757.
[70] LU H,CHEN X,ZHANG G,et al.Scanet:Spatial-Channel Attention Network for 3D Object Detection[C]//Proceedings of the IEEE International Conference on Acoustics,Speech and Signal Processing.Brighton:IEEE,2019:1992-1996.
[71] GUO R,LI D,HAN Y.Deep multi-scale and multi-modal fusion for 3D object detection[J].Pattern Recognition Letters,2021,151:236-242.
[72] WANG G,TIAN B,ZHANG Y,et al.Multi-View Adaptive Fusion Network for 3D Object Detection[J].arXiv:2011.00652,2020.
[73] QI C R,LIU W,WU C,et al.Frustum PointNets for 3D Object Detection from RGB-D Data[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:918-927.
[74] CHARLES R Q,SU H,KAICHUN M,et al.PointNet:DeepLearning on Point Sets for 3D Classification and Segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu:IEEE,2017:77-85.
[75] QI C R,YI L,SU H,et al.PointNet++:Deep Hierarchical Feature Learning on Point Sets in a Metric Space[C]//Procee-dings of the 31st International Conference on Neural Information Processing Systems,2017:5105-5114.
[76] ZHAO X,LIU Z,HU R,et al.3D Object Detection Using Scale Invariant and Feature Reweighting Networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Honolulu:AAAI,2019:9267-9274.
[77] SINDAGI V A,ZHOU Y,TUZEL O.MVX-Net:MultimodalVoxelNet for 3D Object Detection[C]//Proceedings of the International Conference on Robotics and Automation.Montreal:IEEE,2019:7276-7282.
[78] YOO J H,KIM Y,KIM J,et al.3D-CVF:Generating Joint Ca-mera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection[C]//Proceedings of the 16th European Conference on Computer Vision.Glasgow:Springer,2020:720-736.
[79] HUANG T,LIU Z,CHEN X,et al.EPNet:Enhancing PointFeatures with Image Semantics for 3D Object Detection[C]//Proceedings of the 16th European Conference on Computer Vision.Glasgow:Springer,2020:35-52.
[80] MAHMOUD A,HU J S K,WASLANDER S L.Dense Voxel Fusion for 3D Object Detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.Waikoloa:IEEE,2023:663-672.
[81] JIAO Y,JIE Z,CHEN S,et al.MSMDfusion:Fusing LIDAR and Camera at Multiple Scales With Multi-Depth Seeds for 3D Object Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Paris:IEEE,2023:21643-21652.
[82] LIANG M,YANG B,WANG S,et al.Deep Continuous Fusion for Multi-Sensor 3D Object Detection[C]//Proceedings of the 15th European Conference on Computer Vision.Munich:Sprin-ger,2018:663-678.
[83] XIE L,XIANG C,YU Z,et al.PI-RCNN:An Efficient Multi-Sensor 3D Object Detector with Point-Based Attentive Cont-Conv Fusion Module[C]//Proceedings of the AAAI Conference on Artificial Intelligence.New York:AAAI,2020:12460-12467.
[84] XU D,ANGUELOV D,JAIN A.PointFusion:Deep Sensor Fusion for 3D Bounding Box Estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City:IEEE,2018:244-253.
[85] HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas:IEEE,2016:770-778.
[86] WANG J,ZHU M,SUN D,et al.MCF3D:Multi-Stage Complementary Fusion for Multi-Sensor 3D Object Detection[J].IEEE Access,2019,7(5):90801-90814.
[87] LIANG M,YANG B,CHEN Y,et al.Multi-Task Multi-Sensor Fusion for 3D Object Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach:IEEE,2019:7337-7345.
[88] WANG C,MA C,ZHU M,et al.PointAugmenting:Cross-Modal Augmentation for 3D Object Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Nashville:IEEE,2021:11789-11798.
[89] ZHANG Y,CHEN J,HUANG D.CAT-Det:Contrastively Augmented Transformer for Multimodal 3D Object Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:898-907.
[90] WU X,PENG L,YANG H,et al.Sparse Fuse Dense:Towards High Quality 3D Detection with Depth Completion[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:5408-5417.
[91] BAI X,HU Z,ZHU X,et al.TransFusion:Robust LiDAR-Ca-mera Fusion for 3D Object Detection with Transformers[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:1080-1089.
[92] LIANG T,XIE H,YU K,et al.Bevfusion:A simple and robust lidar-camera fusion framework[J].Advances in Neural Information Processing Systems,2022,35:10421-10434.
[93] VORA S,LANG A H,HELOU B,et al.PointPainting:Sequential Fusion for 3D Object Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle:IEEE,2020:4603-4611.
[94] XU S,ZHOU D,FANG J,et al.Fusionpainting:Multimodal fusion with adaptive attention for 3d object detection[C]//IEEE International Intelligent Transportation Systems Conference.Indianapolis:IEEE,2021:3047-3054.
[95] CHEN Z,LI Z,ZHANG S,et al.AutoAlign:Pixel-Instance Feature Aggregation for Multi-Modal 3D Object Detection[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence.Vienna:IJCAI,2022:827-833.
[96] LI Y,QI X,CHEN Y,et al.Voxel Field Fusion for 3D Object Detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.New Orleans:IEEE,2022:1110-1119.
[97] KIM T,GHOSH J.Robust Detection of Non-Motorized RoadUsers Using Deep Learning on Optical and LIDAR Data[C]//Proceedings of the 19th International Conference on Intelligent Transportation Systems.Rio de Janeiro:IEEE,2016:271-276.
[98] ASVADI A,GARROTE L,PREMEBIDA C,et al.Multimodal vehicle detection:fusing 3d-LIDAR and color camera data[J].Pattern Recognition Letters,2018,115:20-29.
[99] PANG S,MORRIS D,RADHA H.CLOCs:Camera-LiDAR Object Candidates Fusion for 3D Object Detection[C]//Procee-dings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.Las Vegas:IEEE,2020:10386-10393.
[100] PANG S,MORRIS D,RADHA H.Fast-CLOCs:Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.Waikoloa:IEEE,2022:3747-3756.
[101] GUO X,SHI S,WANG X,et al.LIGA-Stereo:Learning LiDAR Geometry Aware Representations for Stereo-Based 3D Detector[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.Montreal:IEEE,2021:3133-3143.
[1] XU Jinlong, GUI Zhonghua, LI Jia'nan, LI Yingying, HAN Lin. FP8 Quantization and Inference Memory Optimization Based on MLIR [J]. Computer Science, 2024, 51(9): 112-120.
[2] ZHU Fukun, TENG Zhen, SHAO Wenze, GE Qi, SUN Yubao. Semantic-guided Neural Network Critical Data Routing Path [J]. Computer Science, 2024, 51(9): 155-161.
[3] DU Yu, YU Zishu, PENG Xiaohui, XU Zhiwei. Padding Load:Load Reducing Cluster Resource Waste and Deep Learning Training Costs [J]. Computer Science, 2024, 51(9): 71-79.
[4] CHEN Siyu, MA Hailong, ZHANG Jianhui. Encrypted Traffic Classification of CNN and BiGRU Based on Self-attention [J]. Computer Science, 2024, 51(8): 396-402.
[5] SUN Yumo, LI Xinhang, ZHAO Wenjie, ZHU Li, LIANG Ya’nan. Driving Towards Intelligent Future:The Application of Deep Learning in Rail Transit Innovation [J]. Computer Science, 2024, 51(8): 1-10.
[6] KONG Lingchao, LIU Guozhu. Review of Outlier Detection Algorithms [J]. Computer Science, 2024, 51(8): 20-33.
[7] TANG Ruiqi, XIAO Ting, CHI Ziqiu, WANG Zhe. Few-shot Image Classification Based on Pseudo-label Dependence Enhancement and NoiseInterferenceReduction [J]. Computer Science, 2024, 51(8): 152-159.
[8] XIAO Xiao, BAI Zhengyao, LI Zekai, LIU Xuheng, DU Jiajin. Parallel Multi-scale with Attention Mechanism for Point Cloud Upsampling [J]. Computer Science, 2024, 51(8): 183-191.
[9] ZHANG Junsan, CHENG Ming, SHEN Xiuxuan, LIU Yuxue, WANG Leiquan. Diversified Label Matrix Based Medical Image Report Generation [J]. Computer Science, 2024, 51(8): 200-208.
[10] GUO Fangyuan, JI Genlin. Video Anomaly Detection Method Based on Dual Discriminators and Pseudo Video Generation [J]. Computer Science, 2024, 51(8): 217-223.
[11] GAN Run, WEI Xianglin, WANG Chao, WANG Bin, WANG Min, FAN Jianhua. Backdoor Attack Method in Autoencoder End-to-End Communication System [J]. Computer Science, 2024, 51(7): 413-421.
[12] LI Jiaying, LIANG Yudong, LI Shaoji, ZHANG Kunpeng, ZHANG Chao. Study on Algorithm of Depth Image Super-resolution Guided by High-frequency Information ofColor Images [J]. Computer Science, 2024, 51(7): 197-205.
[13] CAI Wenliang, HUANG Jun. Lane Detection Method Based on RepVGG [J]. Computer Science, 2024, 51(7): 236-243.
[14] SHI Dianxi, GAO Yunqi, SONG Linna, LIU Zhe, ZHOU Chenlei, CHEN Ying. Deep-Init:Non Joint Initialization Method for Visual Inertial Odometry Based on Deep Learning [J]. Computer Science, 2024, 51(7): 327-336.
[15] FAN Yi, HU Tao, YI Peng. Host Anomaly Detection Framework Based on Multifaceted Information Fusion of SemanticFeatures for System Calls [J]. Computer Science, 2024, 51(7): 380-388.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!