Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 231000097-9.doi: 10.11896/jsjkx.231000097
• Image Processing & Multimedia Technology • Previous Articles Next Articles
SHI Jingye1, ZUO Yiping2,3, ZHI Ruicong2,3, LIU Jiqiang1, ZHANG Mengge4
CLC Number:
[1]VAN DE VOORDE T,CANTERS F,POELMANS L,et al.Incorporating land-use mapping uncertainty in remote sensing based calibration of land-use change models[J].The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2013,2(1):7-12. [2]FENG W Q,ZHANG Y J.Object-oriented Change Detection for Remote Sensing Images Based on Multi-scale Fusion[J].Acta Geodaetica et Cartographica Sinica,2015,44(10):1142-1151. [3]WU J,LI B,NI W,et al.An adaptively weighted multi-feature method for object-based change detection in high spatial resolution remote sensing images[J].Remote Sensing Letters,2020,11(4):333-342. [4]BAN Y,YOUSIF O.Change detection techniques:A review[J].Multitemporal Remote Sensing,2016,20:19-43. [5]BRAMICH D M.A new algorithm for difference image analysis[J].Monthly Notices of the Royal Astronomical Society:Letters,2008,386(1):L77-L81. [6]MA J,GONG M,ZHOU Z.Wavelet Fusion on Ratio Images forChange Detection in SAR Images[J].IEEE Geoscience & Remote Sensing Letters,2012,9(6):1122-1126. [7]TEWKESBURY A P,COMBER A J,TATE N J,et al.A critical synthesis of remotely sensed optical image change detection techniques[J].Remote Sensing of Environment,2015,160:1-14. [8]HUANG W,HUANG J L,WANG L H,et al.Remote sensingimage change detection based on change vector analysis of PCA component[J].Remote Sensing for Land & Resources,2016,28(1):22-27. [9]DHARANI M,SREENIVASULU G.Land use and land coverchange detection by using principal component analysis and morphological operations in remote sensing applications[J].International Journal of Computers and Applications,2021,43(5):462-471. [10]ZHU S,XIA X,ZHANG Q,et al.An image segmentation algorithm in image processing based on threshold segmentation[C]//2007 3th IEEE Conference on Signal-image Technologies and Internet-Based System.Shanghai,China,IEEE,2007:673-678. [11]PENG D,ZHANG Y.Object-based change detection from satellite imagery by segmentation optimization and multi-features fusion[J].International Journal of Remote Sensing,2017,38(13):3886-3905. [12]ZHANG Y,PENG D,HUANG X.Object-based change detection for VHR images based on multiscale uncertainty analysis[J].IEEE Geoscience and Remote Sensing Letters,2017,15(1):13-17. [13]SEYDI S T,HASANLOU M,AMANI M.A new end-to-endmulti-dimensional CNN framework for land cover/land use change detection in multi-source remote sensing datasets[J].Remote Sensing,2020,12(12):2010. [14]LI X,CHEN H,QI X,et al.H-DenseUNet:hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J].IEEE transactions on medical imaging,2018,37(12):2663-2674. [15]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Deeplab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected crfs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848. [16]PENG D,ZHANG Y,GUAN H.End-to-end change detectionfor high resolution satellite images using improved UNet++[J].Remote Sensing,2019,11(11):1382. [17]ZHOU Z,SIDDIQUEE M M R,TAJBAKHSH N,et al.Unet++:Redesigning skip connections to exploit multiscale features in image segmentation[J].IEEE Transactions on Medical Imaging,2019,39(6):1856-1867. [18]FANG B,PAN L,KOU R.Dual Learning-Based SiameseFramework for Change Detection Using Bi-Temporal VHR Optical Remote Sensing Images[J].Remote Sensing,2019,11(11):1292. [19]CHEN Y,OUYANG X,AGAM G.Mfcnet:End-to-end ap-proach for change detection in images[C]//2018 25th IEEE International Conference on Image Processing.Athens,Greece,IEEE,2018:4008-4012. [20]HAN X,LEUNG T,JIA Y,et al.MatchNet:Unifying featureand metric learning for patch-based matching[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston,MA,USA,IEEE 2015:3279-3286. [21]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39(4):640-651. [22]CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation[J].arXiv:1706.05587,2017. [23]SZEGEDY C,LIU W,JIA Y,et al.Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition.Boston,MA,USA,IEEE 2015:1-9. [24]CHEN J,YUAN Z,PENG J,et al.DASNet:Dual attentive fully convolutional Siamese networks for change detection in high-resolution satellite images[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2020,14:1194-1206. [25]CSURKA G,LARLUS D,PERRONNIN F,et al.What is a good evaluation measure for semantic segmentation[C]//2013 Electronic Proceedings of the British Machine Vision Conference.London,British,BMVC,2013. [26]BOKHOVKIN A,BURNAEV E.Boundary loss for remotesensing imagery semantic segmentation[C]//2019 In International Symposium on Neural Networks.Cham,Germany,Springer,2019:388-401. [27]LEBEDEV M A,VIZILTER Y V,VYGOLOV O V,et al.Change detection in remote sensing images using conditional adversarial networks[J].International Archives of the Photogrammetry,Remote Sensing & Spatial Information Sciences,2018,42(2):565-571. [28]CHEN H,SHI Z.A spatial-temporal attention-based method and a new dataset for remote sensing image change detection[J].Remote Sensing,2020,12(10):1662. [29]DAUDT R C,LE SAUX B,BOULCH A.Fully convolutional siamese networks for change detection[C]//2018 25th IEEE International Conference on Image Processing.Athens,Greece,IEEE 2018:4063-4067. [30]FANGS,LI K,SHAO J,et al.SNUNet-CD:A densely connected Siamese network for change detection of VHR images[J].IEEE Geoscience and Remote Sensing Letters,2021,19:1-5. [31]BANDARA W G C,PATEL V M.A transformer-based siamese network for change detection[C]//2022 IEEE International Geoscience and Remote Sensing Symposium(IGARSS 2022).IEEE,2022:207-210. [32]SHI Q,LIU M,LI S,et al.A deeply supervised attention metric-based network and an open aerial image dataset for remote sensing change detection[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-16. [33]HAN C,WU C,GUO H,et al.HANet:A hierarchical attention network for change detection with bi-temporal very-high-resolution remote sensing images[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2023,16:3867-3878. |
[1] | ZHOU Yu, YANG Junling, DANG Kelin. Change Detection in SAR Images Based on Evolutionary Multi-objective Clustering [J]. Computer Science, 2024, 51(9): 140-146. |
[2] | WANG Qian, HE Lang, WANG Zhanqing, HUANG Kun. Road Extraction Algorithm for Remote Sensing Images Based on Improved DeepLabv3+ [J]. Computer Science, 2024, 51(8): 168-175. |
[3] | ZHANG Yang, XIA Ying. Object Detection Method with Multi-scale Feature Fusion for Remote Sensing Images [J]. Computer Science, 2024, 51(3): 165-173. |
[4] | LIU Changxin, WU Ning, HU Lirui, GAO Ba, GAO Xueshan. Recursive Gated Convolution Based Super-resolution Network for Remote Sensing Images [J]. Computer Science, 2024, 51(2): 205-216. |
[5] | DONG Yan, WEI Minghong, GAO Guangshuai, LIU Zhoufeng, LI Chunlei. Remote Sensing Orineted Object Detection Method Based on Dual-label Assignment [J]. Computer Science, 2024, 51(11A): 240100058-9. |
[6] | FAN Xuejing, XUE Xiaorong, DU Yichao. Spatiotemporal Fusion Method for Remote Sensing Images Based on Dual Attention Mechanisms [J]. Computer Science, 2024, 51(11A): 240200097-6. |
[7] | MU Zhengyang, DAI Jianguo, ZHANG Guoshun, HOU Wenqing, CHEN Peipei, CAO Yujuan, XU Miaomiao. Impervious Surface Change Detection in Urban Fringe Areas Based on Multi-scale and Dual-attention Network [J]. Computer Science, 2024, 51(11A): 231200064-8. |
[8] | YAN Yan, SUI Yi, SI Jianwei. Remote Sensing Image Pan-sharpening Method Based on Generative Adversarial Network [J]. Computer Science, 2023, 50(8): 133-141. |
[9] | LI Tao, WANG Hairui. Remote Sensing Image Change Detection of Construction Land Based on Siamese AttentionNetwork [J]. Computer Science, 2023, 50(6A): 220500040-5. |
[10] | LI Shasha, XING Hongjie, LI Gang. Multi-temporal Hyperspectral Anomaly Change Detection Based on Dual Space Conjugate Autoencoder [J]. Computer Science, 2023, 50(12): 175-184. |
[11] | LI Tao, WANG Hairui, ZHU Guifu. Detection of Farmland Change Based on Unified Attention Fusion Network [J]. Computer Science, 2023, 50(11A): 221100060-6. |
[12] | WANG Kun-shu, ZHANG Ze-hui, GAO Tie-gang. Reversible Hidden Algorithm for Remote Sensing Images Based on Hachimoji DNA and QR Decomposition [J]. Computer Science, 2022, 49(8): 127-135. |
[13] | LAN Ling-xiang, CHI Ming-min. Remote Sensing Change Detection Based on Feature Fusion and Attention Network [J]. Computer Science, 2022, 49(6): 193-198. |
[14] | CHEN Zhi-wen, WANG Kun, ZHOU Guang-yun, WANG Xu, ZHANG Xiao-dan, ZHU Hu-ming. SAR Image Change Detection Method Based on Capsule Network with Weight Pruning [J]. Computer Science, 2021, 48(7): 190-198. |
[15] | ZHANG Man, LI Jie, ZHU Xin-zhong, SHEN Ji, CHENG Hao-tian. Augmentation Technology of Remote Sensing Dataset Based on Improved DCGAN Algorithm [J]. Computer Science, 2021, 48(6A): 80-84. |
|