Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 231100005-7.doi: 10.11896/jsjkx.231100005
• Image Processing & Multimedia Technology • Previous Articles Next Articles
XU Haidong1,2, ZHANG Zili 1,2,3, HU Xinrong1,2,3, PENG Tao1,2,3 , ZHANG Jun4
CLC Number:
[1]YAO A Q,XU J M.Electric vehicle charging port recognitionand positioning system based on binocular vision[J].Sensors and Microsystems,2021,40(7):81-84. [2]QI Y F,MA Z Y.Multi-loss head pose estimation based on deep residual networks[J].Computer Engineering,2020,46(12):247-253. [3]ZENATI N,ZERHOUNI N.Dense stereo matching with application to augmented reality[C]//2007 IEEE International Conference on Signal Processing and Communications.IEEE,2007:1503-1506. [4]SCHARSTEIN D,SZELISKI R.A taxonomy and evaluation of dense two-frame stereo correspondence algorithms[J].International Journal of Computer Vision,2002,47(1/2/3):7-42. [5]CHANG J R,CHEN Y S.Pyramid Stereo Matching Network[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition:[Volume 8 of 13].IEEE,2018:5410-5418. [6]YANG F,SUN Q,JIN H,et al.Superpixel segmentation with fully convolutional networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:13964-13973. [7]SONG X Y,ZHOU L L,LI Z G,et al.A comprehensive survey of superpixel methods in image segmentation[J].Journal of Image and Graphics,China,2015,20(5):599-608. [8]JAMPANI V,SUN D Q,LIU M Y,et al.Superpixel Sampling Networks[C]//Computer Vision-ECCV 2018:15th European Conference.Springer,2018:363-380. [9]LI P,MA W.OverSegNet:A convolutional encoder-decoder net-work for image over-segmentation[J].Computers and Electrical Engineering,2023,107:108610. [10]LI H,XIONG P,AN J,et al.Pyramid attention network for semantic segmentation[J].arXiv:1805.10180,2018. [11]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [12]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [13]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3431-3440. [14]TIAN X,WANG L,DING Q.A review of image semantic segmentation methods based on deep learning[J].Journal of Software,2019,30(2):440-468. [15]WANG Y R,CHEN Q L,WU J J.A review of image semantic segmentation methods for complex environments[J].Computer Science,2019,46(9):36-46. [16]ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2881-2890. [17]VAN DEN BERGH M,BOIX X,ROIG G,et al.Seeds:Superpixels extracted via energy-driven sampling[C]//Computer Vision-ECCV 2012:12th European Conference on Computer Vision,Florence,Italy,Part VII 12.Springer Berlin Heidelberg,2012:13-26. [18]ARBELAEZ P,MAIRE M,FOWLKES C,et al.Contour detection and hierarchical image segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,33(5):898-916. [19]SILBERMAN N,HOIEM D,KOHLI P,et al.Indoor segmentation and support inference from rgbd images[C]//Computer Vision-ECCV 2012:12th European Conference on Computer Vision,Florence,Italy.Springer Berlin Heidelberg,2012:746-760. [20]STUTZ D,HERMANS A,LEIBE B.Superpixels:An evaluation of the state-of-the-art[J].Computer Vision and Image Understanding,2018,166:1-27. [21]ACHANTA R,SHAJI A,SMITH K,et al.SLIC Super-pixels Compared to State-of-the-Art Superpixel Methods[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2274-2282. [22]LIU M Y,TUZEL O,RAMALINGAM S,et al.Entropy rate superpixel segmentation[C]//CVPR 2011.IEEE,2011:2097-2104. [23]MAYER N,ILG E,HAUSSER P,et al.A large dataset to train convolutional networks for disparity,optical flow,and scene flow estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:4040-4048. [24]YANG G,MANELA J,HAPPOLD M,et al.Hierarchical deep stereo matching on high-resolution images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:5515-5524. [25]PANG J H,SUN W X,JIMMY S J R,et al.Cascade Residual Learning:A Two-stage Convolutional Neural Network for Ste-reo Matching[C]//2017 IEEE International Conference on Computer Vision Workshops(ICCVW 2017).Venice,Italy,2[v.2].:Institute of Electrical and Electronics Engineers,2017:878-886. [26]KENDALL A,MARTIROSYAN H,DASGUPTA S,et al.End-to-End Learning of Geometry and Context for Deep Stereo Regression[C]//ICCV 2017.IEEE,2017. |
[1] | DU Yu, YU Zishu, PENG Xiaohui, XU Zhiwei. Padding Load:Load Reducing Cluster Resource Waste and Deep Learning Training Costs [J]. Computer Science, 2024, 51(9): 71-79. |
[2] | XU Jinlong, GUI Zhonghua, LI Jia'nan, LI Yingying, HAN Lin. FP8 Quantization and Inference Memory Optimization Based on MLIR [J]. Computer Science, 2024, 51(9): 112-120. |
[3] | LI Yunchen, ZHANG Rui, WANG Jiabao, LI Yang, WANG Ziqi, CHEN Yao. Re-parameterization Enhanced Dual-modal Realtime Object Detection Model [J]. Computer Science, 2024, 51(9): 162-172. |
[4] | HU Pengfei, WANG Youguo, ZHAI Qiqing, YAN Jun, BAI Quan. Night Vehicle Detection Algorithm Based on YOLOv5s and Bistable Stochastic Resonance [J]. Computer Science, 2024, 51(9): 173-181. |
[5] | LIU Qian, BAI Zhihao, CHENG Chunling, GUI Yaocheng. Image-Text Sentiment Classification Model Based on Multi-scale Cross-modal Feature Fusion [J]. Computer Science, 2024, 51(9): 258-264. |
[6] | LI Zhe, LIU Yiyang, WANG Ke, YANG Jie, LI Yafei, XU Mingliang. Real-time Prediction Model of Carrier Aircraft Landing Trajectory Based on Stagewise Autoencoders and Attention Mechanism [J]. Computer Science, 2024, 51(9): 273-282. |
[7] | LIU Qilong, LI Bicheng, HUANG Zhiyong. CCSD:Topic-oriented Sarcasm Detection [J]. Computer Science, 2024, 51(9): 310-318. |
[8] | YAO Yao, YANG Jibin, ZHANG Xiongwei, LI Yihao, SONG Gongkunkun. CLU-Net Speech Enhancement Network for Radio Communication [J]. Computer Science, 2024, 51(9): 338-345. |
[9] | SUN Yumo, LI Xinhang, ZHAO Wenjie, ZHU Li, LIANG Ya’nan. Driving Towards Intelligent Future:The Application of Deep Learning in Rail Transit Innovation [J]. Computer Science, 2024, 51(8): 1-10. |
[10] | KONG Lingchao, LIU Guozhu. Review of Outlier Detection Algorithms [J]. Computer Science, 2024, 51(8): 20-33. |
[11] | LIU Sichun, WANG Xiaoping, PEI Xilong, LUO Hangyu. Scene Segmentation Model Based on Dual Learning [J]. Computer Science, 2024, 51(8): 133-142. |
[12] | TANG Ruiqi, XIAO Ting, CHI Ziqiu, WANG Zhe. Few-shot Image Classification Based on Pseudo-label Dependence Enhancement and NoiseInterferenceReduction [J]. Computer Science, 2024, 51(8): 152-159. |
[13] | ZHANG Rui, WANG Ziqi, LI Yang, WANG Jiabao, CHEN Yao. Task-aware Few-shot SAR Image Classification Method Based on Multi-scale Attention Mechanism [J]. Computer Science, 2024, 51(8): 160-167. |
[14] | WANG Qian, HE Lang, WANG Zhanqing, HUANG Kun. Road Extraction Algorithm for Remote Sensing Images Based on Improved DeepLabv3+ [J]. Computer Science, 2024, 51(8): 168-175. |
[15] | XIAO Xiao, BAI Zhengyao, LI Zekai, LIU Xuheng, DU Jiajin. Parallel Multi-scale with Attention Mechanism for Point Cloud Upsampling [J]. Computer Science, 2024, 51(8): 183-191. |
|