Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230500164-9.doi: 10.11896/jsjkx.230500164
• Artificial Intelligenc • Previous Articles Next Articles
WANG Yingjie1, ZHANG Chengye1, BAI Fengbo2, WANG Zumin1
CLC Number:
[1]PAPINENI K,ROUKOS S,WARD T,et al.Bleu:A method for automatic evaluation of machine translation[C]//Proceedings of the Meeting of the Association for Computational Linguistics.Stroudsburg,PA:ACL,2002:311-318. [2]LIN C Y.ROUGE:A package for automatic evaluation of summaries[C]//Proceedings of the Meeting of the Association for Computational Linguistics.Stroudsburg,PA:ACL,2004:74-81. [3]LAVIE A,AGARWAL A.METEOR:An automatic metric for MT evaluation with high levels of correlation with human judgments[C]//Proceedings of the Workshop on Statistical Machine Translation.Stroudsburg,PA:ACL,2007:228-231. [4]ANDERSON P,FERNANDO B,JOHNSON M,et al.SPICE:Semantic propositional image caption evaluation[C]//Procee-dings of the 14th European Conference on ComputerVision(ECCV 2016).Amsterdam,The Netherlands,2016:382-398. [5]VEDANTAM R,ZITNICK C L,PARIKH D,et al.CID Er:Consensus-based image description evaluation[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Re-cognition(CVPR).Piscataway,NJ:IEEE,2015:4566-4575. [6]DEMARTINI G,DIFALLAH D E,CUDREMAUROUX P.ZenCrowd:Leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking[C]//Proceedings of the 21st international conference on World Wide Web.New York:ACM,2012:469-478. [7]PAN Z G.Research on the recognition of Chinese named entity based on rules and statistics[J].Information Science,2012,30(5):708-712. [8]FENG Y,JIANG B,WANG L,et al.Cybersecurity named entity recognition using multi-modal ensemble learning[J].IEEE Access,2020,8:63214-63224. [9]ZHAO Z H,YANG Z B,LUO L,et al.Disease named entity recognition from biomedical literature using a novel convolu-tional neural network[J].BMC Medical Genomics,2017,10(S5):75-83. [10]WANG P H,LI M Z,LI S.Data augmentation for Chinese clinical named entity recognition[J].Journal of Beijing University of Posts and Telecommunications,2020,43(5):84-90. [11]AGUILAR G,MAHARJAN S,SOLORIO T,et al.A multi-task approach for named entity recognition in social media data[J].arXiv:1906.04135,2019. [12]GUO X C,TANG Z,DIAO L,et al.Recognition of Chinese agricultural diseases and pests named entity with joint radical-embedding and self-attention mechanism[J].Transactions of the Chinese Society for Agricultural Machinery,2020,51(S2):335-343. [13]ZHANG H,GUO Y B,LI T.Domain named entity recognition combining GAN and BiLSTM-attention-CRF[J].Journal of Computer Research and Development,2019,56(9):1851-1858. [14]DAS P,DAS K A,NAYAK J,et al.A graph based clustering approach for relation extraction from crime data[J].IEEE Access,2019,7,101269-101282. [15]ZHAO P F,ZHAO C J,WU H R,et al.Named entity recognition of Chinese agricultural text based on attention mechanism[J].Transactions of the Chinese Society for Agricultural Machinery,2021,52(1):185-192. [16]YU Y X,LI X.Research on text annotation method of ancient works from the perspective of digital humanities:a case study on MARKUS[J].Big Data Research,2022,8(6):15-25. [17]ZHANG K L,ZHAO X,GUAN T F,et al.A platform for entity and entity relationship labeling in medical texts[J].Journal of Chinese Information Processing,2020,34(6),36-44. [18]LAWSON N,EUSTICE K,PERKOWITZ M,et al.Annotating large email datasets for named entity recognition with Mechanical Turk[C]//Proceedings of the NAACL HLT 2010 Workshop on Creating Speech and Language Data with Amazon’s Mecha-nical Turk.Stroudsburg:ACL,2010:71-79. [19]BOSTOCK M,OGIEVETSKY V,HEER J.D3:Data-DrivenDocuments[J].IEEE Transactions on Visualization and Computer Graphics,2011,17(12):2301-2309. [20]MENDEZ G G,NACENTA M A.iVoLVER:Interactive Visual Language for Visualization Extraction and Reconstruction[C]//Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.New York:ACM,2017:4073-4085. [21]REN D H,HOLLERER T,YUAN X R.iVisDesigner:Expressive Interactive Design of Information Visualizations[J].IEEE Transactions on Visualization and Computer Graphics,2014,20(12):2092-2101. [22]ZHANG Y,WANG Y,ZHANG H D,et al.OneLabeler:A Fle-xible System for Building Data Labeling Tools[C]//Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems.Stroudsburg:ACL,2022:1-22. [23]FAN H,HUANG H C,WANG X,et al.Research on Know-ledge Extraction Technology of Power Grid Text Data based on Semantic annotation[C]//Proceedings of the Third Smart Grid Conference.2018:146-150. [24]ZHU Y,JING L P,YU J.An Active Labeling Method for Text Data Based on Nearest Neighbor and Information Entropy[J].Journal of Computer Research and Development,2012,49(6):1306-1312. [25]SUN Q,HE W X,CHEN L Y,et al.Multi-Label Automatic Labeling for Question Attributes Based on Adaboost and Bayes Algorithms[C]//Proceedings of 2018 Chinese Automation Congress.Piscataway,NJ:IEEE,2018,2955-2960. [26]BEYETTE D,WANG Z L,LIN J,et al.semi-automatic LaTeX-based labeling of mathematical objects in PDF documents:MOP data set[C]//Proceedings of the ACM Symposium on Document Engineering 2019.Stroudsburg:ACL,2019:1-4. [27]FORT K,EHRMANN M,NAZARENKO A,et al.Towards amethodology for named entities annotation[C]//Proceedings of the Third Linguistic Annotation Workshop.Stroudsburg:ACL,2009:142-145. [28]CAI Y B.AI Assistance:How to Handle Civil and Commercial Cases[J].Oriental Law,2018,18(3):131-139. [29]WENG Y,GU S Y,LI J,et al.Paragraph Context-Based Text Classification Approach for Large-Scale Judgment Text Structuring[J].Journal of Tianjin University(Science and Technology),2021,54(4):418-425. [30]ZHANG Y,YANG J.Chinese NER using lattice LSTM[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:ACL,2018:1554-1564. [31]SUI D B,CHEN Y B,LIU K,et al.Leverage lexical knowledge for Chinese named entity recognition via collaborative graph network[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Stroudsburg:ACL,2019:3830-3840. [32]GUI T,ZOU Y C,ZHANG Q,et al.A lexicon-based graph neural network for Chinese NER[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Stroudsburg:ACL,2019:1040-1050. [33]MA R T,GUI T,ZHANG Q,et al.CNN-based Chinese NER with lexicon rethinking[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence.Menlo Park,CA:AAAI,2019:4982-4988. [34]KONG B,LIU S Q,WEI F Y,et al.Chinese relation extraction using extend softword[J].IEEE Access,2021,9:110299-110308. [35]LI X N,YAN H,QIU X P,et al.FLAT:Chinese NER using flat-lattice transformer[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:ACL,2020:6836-6842. [36]LIU F,LU H,LO C,et al.Learning character-level compositionality withvisual features[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics.Stroudsburg:ACL,2017:2059-2068. [37]SU T R,LEE H Y.Learning Chinese word representations from glyphs of characters[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.Stroudsburg:ACL,2017:264-273. [38]MENG Y X,WU W,LI X Y,et al.Glyce:Glyph-vectors for Chinese character representations[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems.New York:ACM,2019:2746-2757. [39]CAO S H,LU W,ZHOU J,et al.Cw2vec:Learning Chinese wordembeddings with stroke n-gram information[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,the 30th innovative Applications of Artificial Intelligence,and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence.Menlo Park:AAAI,2018:5053-5061. [40]SUN Y M,LIN L,YANG N,et al.Radical-enhanced Chinese character embedding[C]//Proceedings of the 21st International Conference on Neural Information Processing.Berlin,Heidelberg:Springer,2014:279-286. [41]SHAO Y,HARDMEIER C,TIEDEMANN J,et al.Character-based joint segmentation andpos tagging for Chinese using bidirectional RNN-CRF[C]//Proceedings of the Eighth International Joint Conference on Natural Language Processing.Stroudsburg:ACL,2017:173-183. [42]ZHANG Y,LIU Y G,ZHU J J,et al.Learning Chinese wordembeddings from stroke,structure and pinyin of characters[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.New York:ACM,2019:1011-1020. [43]ZHU W H,JIN X,NI J Y,et al.Improve word embedding using both writing and pronunciation[J].PLoS One,2018,13(12):1-13. [44]CHAUDHARY A,ZHOU C,LEVIN L,et al.Adapting wordembeddings to new languages with morphological and phonological subword representations[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.Stroudsburg:ACL,2018:3285-3295. [45]PENG N Y,DREDZE M.Named entity recognition for Chinese social media with jointly trained embeddings[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.Stroudsburg:ACL,2015:548-554. [46]PENG N Y,DREDZE M.Improving named entity recognitionfor Chinese social media with word segmentation representation learning[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Volume 2:Short Papers).Stroudsburg:ACL,2016:149-155. [47]HE H F,SUN X.F-score driven max margin neural network for named entity recognition in Chinese social media[C]//Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics:Volume 2.Stroudsburg:ACL,2017:713-718. [48]HE H F,SUN X.A unified model for cross-domain and semi-supervised named entity recognition in Chinese social media[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence.Menlo Park:AAAI,2017:3216-3222. [49]CAO P F,CHEN Y B,LIU K,et al.Adversarial transfer lear-ning for Chinese named entity recognition with self-attention mechanism[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.Stroudsburg:ACL,2018:182-192. |
[1] | HUANG Haixin, CAI Mingqi, WANG Yuyao. Review of Point Cloud Semantic Segmentation Based on Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230400196-7. |
[2] | YANG Binxia, LUO Xudong, SUN Kaili. Recent Progress on Machine Translation Based on Pre-trained Language Models [J]. Computer Science, 2024, 51(6A): 230700112-8. |
[3] | ZHANG Le, YU Ying, GE Hao. Mural Inpainting Based on Fast Fourier Convolution and Feature Pruning Coordinate Attention [J]. Computer Science, 2024, 51(6A): 230400083-9. |
[4] | WU Yibo, HAO Yingguang, WANG Hongyu. Rice Defect Segmentation Based on Dual-stream Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230600107-8. |
[5] | HOU Linhao, LIU Fan. Remote Sensing Image Fusion Combining Multi-scale Convolution Blocks and Dense Convolution Blocks [J]. Computer Science, 2024, 51(6A): 230400110-6. |
[6] | HUANG Yuanhang, BIAN Shan, WANG Chuntao. Gaussian Enhancement Module for Reinforcing High-frequency Details in Camera ModelIdentification [J]. Computer Science, 2024, 51(6A): 230700125-5. |
[7] | SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen. Study on Super-resolution Image Reconstruction Using Residual Feature Aggregation NetworkBased on Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600039-6. |
[8] | SHI Songhao, WANG Xiaodan, YANG Chunxiao, WANG Yifei. SAR Image Target Recognition Based on Cross Domain Few Shot Learning [J]. Computer Science, 2024, 51(6A): 230800136-7. |
[9] | LI Yuanxin, GUO Zhongfeng, YANG Junlin. Container Lock Hole Recognition Algorithm Based on Lightweight YOLOv5s [J]. Computer Science, 2024, 51(6A): 230900021-6. |
[10] | HUANG Haixin, WU Di. Steel Defect Detection Based on Improved YOLOv7 [J]. Computer Science, 2024, 51(6A): 230800018-5. |
[11] | LI Minzhe, YIN Jibin. TCM Named Entity Recognition Model Combining BERT Model and Lexical Enhancement [J]. Computer Science, 2024, 51(6A): 230900030-6. |
[12] | LIANG Fang, XU Xuyao, ZHAO Kailong, ZHAO Xuanfeng, ZHANG Guijun. Remote Template Detection Algorithm and Its Application in Protein Structure Prediction [J]. Computer Science, 2024, 51(6A): 230600225-7. |
[13] | PENG Bo, LI Yaodong, GONG Xianfu, LI Hao. Method for Entity Relation Extraction Based on Heterogeneous Graph Neural Networks and TextSemantic Enhancement [J]. Computer Science, 2024, 51(6A): 230700071-5. |
[14] | ZHANG Tianchi, LIU Yuxuan. Research Progress of Underwater Image Processing Based on Deep Learning [J]. Computer Science, 2024, 51(6A): 230400107-12. |
[15] | WANG Guogang, DONG Zhihao. Lightweight Image Semantic Segmentation Based on Attention Mechanism and Densely AdjacentPrediction [J]. Computer Science, 2024, 51(6A): 230300204-8. |
|