Computer Science ›› 2024, Vol. 51 ›› Issue (9): 59-70.doi: 10.11896/jsjkx.231100015
• High Performance Computing • Previous Articles Next Articles
LI Zekai, ZHONG Jiaqing, FENG Shaojun, CHEN Juan, DENG Rongyu, XU Tao, TAN Zhengyuan, ZHOU Kexing, ZHU Pengzhi, MA Zhaoyang
CLC Number:
[1]CHEN J,ZHOU W H,DONG Y,et al.Analyzing time-dimen-sion communication characterizations for representative scienti-fic applications on super computer systems[J].Frontiers of Computer Science,2019,13(6):1228-1242. [2]CHEN J,QI X,WU F,et al.More Bang for Your Buck:Boosting Performance with Capped Power Consumption[J].Tsinghua Science and Technology,2021,26(3):370-383. [3]WANG Z,TANG Y,CHEN J,et al.Energy wall for exascalesupercomputing[J].Computing and Informatics,2016,35(4):941-962. [4]TIWARI A,LAURENZANO M A,CARRINGTON L,et al.Modeling Power and Energy Usage of HPC Kernels[C]//IEEE International Parallel & Distributed Processing Symposium Workshops & Phd Forum.IEEE,2012. [5]ZHOU Z,ABAWAJY J H,LI F,et al.Fine-Grained EnergyConsumption Model of Servers Based on Task Characteristics in Cloud Data Center[J].IEEE Access,2018,6:27080-27090. [6]VON KISTOWSKI J,GROHMANN J,SCHMITT N,et al.Predicting server power consumption from standard rating results[C]//International Conference on Performance Engineering.2019. [7]LIN W,WU G,WANG X,et al.An artificial neural network approach to power consumption model construction for servers in cloud data centers[J].IEEE Transactions on Sustainable Computing,2019,5(3):329-340. [8]LI Y,HU H,WEN Y,et al.Learning-based power prediction for data centre operations via deep neural networks[C]//the 5th International Workshop.ACM,2016. [9]ZHANG Y,DONG Y,CHEN J,et al.Pmc-based dynamic adaptive cpu and dram power modeling[C]//International Confe-rence on Algorithm and Architectures for Parrallel Processing.2020:92-111. [10]SPEC.Standard performance evaluation corporation[EB/OL].2017.http://www.spec.org/cpu2017/. [11]LUSZCZEK P R,BAILEY D H,DONGARRA J J,et al.S12-the hpc challenge(hpcc) benchmark suite[Z].2006. [12]PARSEC.The princeton application repository for shared- me-mory computers[EB/OL].https://parsec.oden.utexas.edu/. [13]GRAPH500.Graph500[EB/OL].https://graph500.org/. [14]BRIAN C.The smg2000 benchmark code[EB/OL].https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/smg/. [15]HPCG.High performance conjugate gradients[EB/OL].ht-tps://www.hpcg-benchmark.org/. [16]JACK D.Hpl-ai mixed-precision benchmark[EB/OL].https://icl.bitbucket.io/hpl-ai/. [17]ERIKSSON L,JOHANSSON E,WOLD S.On the selection of the training set in environmental qsar analysis when compounds are clustered[J].Journal of Chemometrics,2000,14:599-616. [18]GUTIERREZ M,TAMIR D,QASEM A.Evaluating NeuralNetwork Methods for PMC-based CPU Power Prediction[C]//International Multi-Conference on Computing in the Global Information Technology.2015. [19]MARBACH M,ONDUSKO R,RAMACHANDRAN R P,et al.Neural network classifiers and Principal Component Analysis for blind signal to noise ratio estimation of speech signals[C]//2009 IEEE International Symposium on Circuits and Systems(ISCAS).2009:97-100. [20]CALIN'SKI T,HARABASZ J.A dendrite method for clusteranalysis[J].Communications in Statistics-theory and Methods,1974,3:1-27. [21]ZHANG F L,ZHOU H C,ZHANG J J,et al.Protocol classification algorithm based on improved cohesive hierarchical clustering [J].Computer Engineering and Science,2017,39(4):796-803. [22]XIE Z Y,XU X Q,WALKER M,et al.Apollo:An automated power modeling framework for run-time power introspection in high-volume commercial microprocessors[C]//54th Annual IEEE/ACM International Symposium on Microarchitecture.2021:1-14. [23]NIKOV K,MARTINEZ M,CHAMSKI Z,et al.Robust and accurate fine-grain power models for embedded systems with no on-chip pmu[J].arXiv.2106.00565,2021. [24]TIWARI A,LAURENZANO M A,CARRINGTON L,et al.Modeling Power and Energy Usage of HPC Kernels[C]//IEEE International Parallel & Distributed Processing Symposium Workshops & Phd Forum.IEEE,2012. [25]FENG X,GE R,CAMERON K W.Power and Energy Profiling of Scientific Applications on Distributed Systems[C]//19th IEEE International Parallel and Distributed Processing Sympo-sium.2005. [26]CONTRERAS G,MARTONOSI M.Power prediction for intel xscale processors using performance monitoring unit events[C]//Proceedings of the 2005 International Symposium on Low Power Electronics and Design.2005:221-226. [27]WU X,TAYLOR V.Utilizing Hardware Performance Counters to Model and Optimize the Energy and Performance of Large Scale Scientific Applications on Power-Aware Supercomputers[C]//IEEE International Parallel & Distributed Processing Symposium Workshops.IEEE,2016. [28]BIRCHER W L,VALLURI M,LAW J,et al.Runtime identifi-cation ofmicroprocessor energy saving opportunities[C]//International Symposium on Low Power Electronics & Design.IEEE,2005. [29]QU G,KAWABE N,USAMI K,et al.Function-level power estimation methodology for microprocessors[C]//Proceedings of the 37th Annual Design Automation Conference.2000:810-813. [30]LAROS J H,POKORNY P,DEBONIS D,et al.Powerinsight-a commodity power measurement capability[C]//2013 International Green Computing Conference Proceedings(IGCC).2013:1-6. [31]BEDARD D,LIM M Y,FOWLER R,et al.Powermon:Fine-grained and integrated power monitoring for commodity compu-ter systems[C]//IEEE Southeastcon.2010:479-484. [32]ZHENG X,JOHN L K,GERSTLAUER A,et al.Lacross:Learning-based analytical cross-platform performance and power prediction[J].International Journal of Parallel Programming,2017,45(6):1488-1514. [33]JOSEPH R,MARTONOSI M.Run-time power estimation inhigh performance microprocessors[C]//International Sympo-sium on Low Power Electronics Design.2001. |
[1] | YAN Xin, HUANG Zhiqiu, SHI Fan, XU Heng. Study on Following Car Model with Different Driving Styles Based on Proximal PolicyOptimization Algorithm [J]. Computer Science, 2024, 51(9): 223-232. |
[2] | ZHANG Jindou, CHEN Jingwei, WU Wenyuan, FENG Yong. Privacy-preserving Principal Component Analysis Based on Homomorphic Encryption [J]. Computer Science, 2024, 51(8): 387-395. |
[3] | LI Kejia, HU Xuexian, CHEN Yue, YANG Hongjian, XU Yang, LIU Yang. Differential Privacy Linear Regression Algorithm Based on Principal Component Analysis andFunctional Mechanism [J]. Computer Science, 2023, 50(8): 342-351. |
[4] | WANG Shan, LIU Lu. Soil Moisture Data Reconstruction Based on Low Rank Matrix Completion Method [J]. Computer Science, 2023, 50(11A): 230300073-6. |
[5] | LI Qi-ye, XING Hong-jie. KPCA Based Novelty Detection Method Using Maximum Correntropy Criterion [J]. Computer Science, 2022, 49(8): 267-272. |
[6] | QUE Hua-kun, FENG Xiao-feng, LIU Pan-long, GUO Wen-chong, LI Jian, ZENG Wei-liang, FAN Jing-min. Application of Grassberger Entropy Random Forest to Power-stealing Behavior Detection [J]. Computer Science, 2022, 49(6A): 790-794. |
[7] | YANG Xu-hua, WANG Lei, YE Lei, ZHANG Duan, ZHOU Yan-bo, LONG Hai-xia. Complex Network Community Detection Algorithm Based on Node Similarity and Network Embedding [J]. Computer Science, 2022, 49(3): 121-128. |
[8] | QI Ying, CHAI Yan-mei. High-resolution Remote Sensing Sea Ice Image Segmentation Based on Combination of ImprovedSLIC Algorithm and Clustering Algorithm [J]. Computer Science, 2022, 49(11A): 211200100-6. |
[9] | LIU Fang-zheng, MA Bo-wen, LYU Bo-feng, HUANG Ji-wei. UAV Base Station Deployment Method for Mobile Edge Computing [J]. Computer Science, 2022, 49(11A): 220200089-7. |
[10] | GAO Ji-hang, ZHANG Yan. Fault Diagnosis of Shipboard Zonal Distribution Power System Based on FWA-PSO-MSVM [J]. Computer Science, 2022, 49(11A): 210800209-5. |
[11] | WU Shan-jie, WANG Xin. Prediction of Tectonic Coal Thickness Based on AGA-DBSCAN Optimized RBF Neural Networks [J]. Computer Science, 2021, 48(7): 308-315. |
[12] | HU Xin-tong, SHA Chao-feng, LIU Yan-jun. Post-processing Network Embedding Algorithm with Random Projection and Principal Component Analysis [J]. Computer Science, 2021, 48(5): 124-129. |
[13] | WANG Yi-hao, DING Hong-wei, LI Bo, BAO Li-yong, ZHANG Ying-jie. Prediction of Protein Subcellular Localization Based on Clustering and Feature Fusion [J]. Computer Science, 2021, 48(3): 206-213. |
[14] | JIN Yu-fang, WU Xiang, DONG Hui, YU Li, ZHANG Wen-an. Improved YOLO v4 Algorithm for Safety Helmet Wearing Detection [J]. Computer Science, 2021, 48(11): 268-275. |
[15] | FENG An-ran, WANG Xu-ren, WANG Qiu-yun, XIONG Meng-bo. Database Anomaly Access Detection Based on Principal Component Analysis and Random Tree [J]. Computer Science, 2020, 47(9): 94-98. |
|