Computer Science ›› 2024, Vol. 51 ›› Issue (12): 303-309.doi: 10.11896/jsjkx.231200041
• Information Security • Previous Articles Next Articles
ZHONG Kai1, GUO Chun1, LI Xianchao2, SHEN Guowei1
CLC Number:
[1]TEKINER E,ACAR A,ULUAGAC A S,et al.SoK:cryptojacking malware[C]//IEEE European Symposium on Security and Privacy.2021:120-139. [2]Malwarebytes.2022 THREAT REVIEW[EB/OL].[2023-08-18].https://www.malwarebytes.com/resources/malwarebytes-threat-review-2022/index.html. [3]AHMAD A,SHAFIUDDIN W,KAMA M N,et al.A NewCryptojacking Malware Classifier Model Based on Dendritic Cell Algorithm[C]//International Conference on Vision,Image and Signal Processing.2019:84:1-84. [4]MUÑOZ J Z I,SUÁREZ-VARELA J,BARLET-ROS P.Detecting cryptocurrency miners with NetFlow/IPFIX network mea-surements[C]//2019 IEEE International Symposium on Mea-surements & Networking(M&N).IEEE,2019:1-6. [5]CAPROLU M,RAPONI S,OLIGERI G,et al.Cryptominingmakes noise:Detecting cryptojacking via Machine Learning[J].Computer Communications,2021,171:126-139. [6]TANANA D,TANANA G.Advanced behavior-based technique for cryptojacking malware detection[C]//International Confe-rence on Signal Processing and Communication Systems.2019:84:1-84. [7]BERECZ G J,CZIBULA I G.Hunting traits for cryptojackers[C]//Proceedings of the 16th International Joint Conference on e-Business and Telecommunications.2019:386-393. [8]DARABIAN H,HOMAYOUNOOT S,DEHGHANTANHAA,et al.Detecting cryptomining malware:a deep learning approach for static and dynamic analysis[J].Journal of Grid Computing,2020,18(2):293-303. [9]MANI G,PASUMARTI V,BHARGAVA B,et al.Decryptopro:deep learning based cryptomining malware detection using performance counters[C]//2020 IEEE International Conference on Autonomic Computing and Self-Organizing Systems(AC-SOS).IEEE,2020:109-118. [10]KARN R R,KUDVA P,HUANG H,et al.Cryptomining detection in container clouds using system calls and explainable machine learning[J].IEEE Transactions on Parallel and Distributed Systems,2020,32(3):674-691. [11]SUN P F,LYU M D,LI H,et al.An early stage convolutional feature extracting method using for mining traffic detection[J].Computer Communications,2022,193:346-354. [12]CAO C B,GUO C,SHEN G W,et al.Cryptomining Malware Early Detection Method in Behavioral Diversity Period[J].Acta Electronica Sinica,2023,51(7):1850-1858. [13]CAO C B,GUO C,LI X C,et al.Cryptomining Malware Early Detection Method Based on AECD Embedding[J].Journal of Frontiers of Computer Science and Technology,2024,18(4):1083-1093. [14]Microsoft.Dynamic-Link Libraries(Dynamic-Link Libraries)[EB/OL].[2023-08-18].https://learn.microsoft.com/en-us/windows/win32/dlls/dynamic-link-libraries. [15]IJAZ M,DURAD M H,ISMAIL M.Static and Dynamic Malware Analysis Using Machine Learning[C]//2019 16th International Bhurban Conference on Applied Sciences and Technology(IBCAST- 2019).2019. [16]Microsoft.How to:Call Windows APIs(Visual Basic)[EB/OL].[2023-03-30].https://learn.microsoft.com/en-us/dotnet/visual-basic/programming-guide/com-interop/how-to-call-windows-apis. [17]SHANNON C E.A Mathematical Theory of Communication[J].The Bell System Technical Journal,1948,27(3):379-423. [18]Microsoft.Methods(C# Programming Guide)[EB/OL].[2023-03-30].https://learn.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/methods. [19]MIKOLOVT,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Curran Associates Inc., 2013:3111-3119. [20]KIM Y.Convolutional neural networks for sentence classification[J].arXiv:1408.5882,2014. |
[1] | DU Yu, YU Zishu, PENG Xiaohui, XU Zhiwei. Padding Load:Load Reducing Cluster Resource Waste and Deep Learning Training Costs [J]. Computer Science, 2024, 51(9): 71-79. |
[2] | XU Jinlong, GUI Zhonghua, LI Jia'nan, LI Yingying, HAN Lin. FP8 Quantization and Inference Memory Optimization Based on MLIR [J]. Computer Science, 2024, 51(9): 112-120. |
[3] | CHEN Siyu, MA Hailong, ZHANG Jianhui. Encrypted Traffic Classification of CNN and BiGRU Based on Self-attention [J]. Computer Science, 2024, 51(8): 396-402. |
[4] | SUN Yumo, LI Xinhang, ZHAO Wenjie, ZHU Li, LIANG Ya’nan. Driving Towards Intelligent Future:The Application of Deep Learning in Rail Transit Innovation [J]. Computer Science, 2024, 51(8): 1-10. |
[5] | KONG Lingchao, LIU Guozhu. Review of Outlier Detection Algorithms [J]. Computer Science, 2024, 51(8): 20-33. |
[6] | TANG Ruiqi, XIAO Ting, CHI Ziqiu, WANG Zhe. Few-shot Image Classification Based on Pseudo-label Dependence Enhancement and NoiseInterferenceReduction [J]. Computer Science, 2024, 51(8): 152-159. |
[7] | XIAO Xiao, BAI Zhengyao, LI Zekai, LIU Xuheng, DU Jiajin. Parallel Multi-scale with Attention Mechanism for Point Cloud Upsampling [J]. Computer Science, 2024, 51(8): 183-191. |
[8] | ZHANG Junsan, CHENG Ming, SHEN Xiuxuan, LIU Yuxue, WANG Leiquan. Diversified Label Matrix Based Medical Image Report Generation [J]. Computer Science, 2024, 51(8): 200-208. |
[9] | GUO Fangyuan, JI Genlin. Video Anomaly Detection Method Based on Dual Discriminators and Pseudo Video Generation [J]. Computer Science, 2024, 51(8): 217-223. |
[10] | GAN Run, WEI Xianglin, WANG Chao, WANG Bin, WANG Min, FAN Jianhua. Backdoor Attack Method in Autoencoder End-to-End Communication System [J]. Computer Science, 2024, 51(7): 413-421. |
[11] | YANG Heng, LIU Qinrang, FAN Wang, PEI Xue, WEI Shuai, WANG Xuan. Study on Deep Learning Automatic Scheduling Optimization Based on Feature Importance [J]. Computer Science, 2024, 51(7): 22-28. |
[12] | LI Jiaying, LIANG Yudong, LI Shaoji, ZHANG Kunpeng, ZHANG Chao. Study on Algorithm of Depth Image Super-resolution Guided by High-frequency Information ofColor Images [J]. Computer Science, 2024, 51(7): 197-205. |
[13] | SHI Dianxi, GAO Yunqi, SONG Linna, LIU Zhe, ZHOU Chenlei, CHEN Ying. Deep-Init:Non Joint Initialization Method for Visual Inertial Odometry Based on Deep Learning [J]. Computer Science, 2024, 51(7): 327-336. |
[14] | FAN Yi, HU Tao, YI Peng. Host Anomaly Detection Framework Based on Multifaceted Information Fusion of SemanticFeatures for System Calls [J]. Computer Science, 2024, 51(7): 380-388. |
[15] | HOU Linhao, LIU Fan. Remote Sensing Image Fusion Combining Multi-scale Convolution Blocks and Dense Convolution Blocks [J]. Computer Science, 2024, 51(6A): 230400110-6. |
|