Computer Science ›› 2024, Vol. 51 ›› Issue (11): 191-197.doi: 10.11896/jsjkx.240100063
• Computer Graphics & Multimedia • Previous Articles Next Articles
CHENG Yan
CLC Number:
[1] LI X R,JI S L,WU C M,et al.Survey on Deepfakes and Detection Techniques[J].Journal of Software,2021,32(2):496-518. [2] ZHANG Y X,LI G,CAO Y,et al.A Method for Detecting Human-face-tampered Videos based on Interframe Difference[J].Journal of Cyber Security,2020(2):49-72. [3] HAN B,HAN X G,ZHANG H,et al.Fighting Fake News:TwoStream Network for Deepfake Detection via Learnable SRM[J].IEEE Transactions on Biometrics,Behavior,and Identity Science,2021,3(3):320-331. [4] QI H,GUO Q,XU J F,et al.DeepRhythm:Exposing DeepFakeswith Attentional Visual Heartbeat Rhythms[C]//Proceedings of the 28th ACM International Conference on Multimedia.2020:1318-1327. [5] JUNG T,KIM S,KIM K.DeepVision:Deepfakes DetectionUsing Human Eye Blinking Pattern[J].IEEE Access,2020,8:83144-83154. [6] AGARWAL S,FARID H,GU Y M,et al.Protecting WorldLeaders Against Deep Fakes[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2019:38-45. [7] YANG X,LI Y Z,LYU S.Exposing Deep Fakes using Inconsistent Head Poses[C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing.2019:8261-8265. [8] ROSSLER A,COZZOLINO D,VERDOLIVA L,et al.FaceFo-rensics++:Learning to Detect Manipulated Facial Images[C]//Proceedings of IEEE International Conference on Computer Vision.2019:1-11. [9] AMERINI I,GALTERI L,CALDELLI R,et al.Deepfake Video Detection through Optical Flow based CNN[C]//Proceedings of International Conference on Computer Vision Workshop.2019:1205-1207. [10] AKASH C,AISHWARYA R,SANIAT S,et al.Leveraging Edges and Optical Flow on Faces for Deepfake Detection[C]//Proceedings of IEEE/IAPR International Joint Conference on Biometrics.2020. [11] CHOLLET F.Xception:Deep Learning with Depthwise Separable Convolutions[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition.2017:1800-1807. [12] SABIR E,CHENG J X,JAISWAL A,et al.Recurrent Convolutional Strategies for Face Manipulation Detection in Videos[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops.2019:80-87. [13] GUERA D,DELP E J.DeepfakeVideo Detection using Recur-rent Neural Network[C]//Proceedings of the 15th IEEE International Conference on Advanced Video and Signal Based Surveillance.2018:1-6. [14] AFCHAR D,NOZICK V,YAMAGISHI J,et al.Mesonet:ACompact Facial Video Forgery Detection Network[C]//Procee-dings of IEEE International Workshop on Information Forensics and Security.2018:1-7. [15] SZEGEDY C,VANHOUCKE V,LOFFE S,et al.RethinkingtheInception Architecture for Computer Vision[C]//Procee-dings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2016:2818-2826. [16] NGUYEN H H,YAMAGISHI J,ECHIZEN I.Capsule-foren-sics:Using Capsule Networks to Detect Forged Images and Vi-deos[C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing.2019:2307-2311. [17] SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-scale Image Recognition[C]//Proceedings of the 3rd International Conference on Learning Representations.2015. [18] ARASH H,NIMAJAFARI N,HASAN D,et al.A Novel Blockchain-based Deepfake Detection Method using Federated and Deep Learning Models[J].Cognitive Computation,2024,16(3):1073-1091. [19] YU P P,FEI J W,XIA Z H,et al.Improving Generalization by Commonality Learning in Face Forgery Detection[J].IEEE Transactions on Information Forensics and Security,2022(17):547-558. [20] XING H,LI M.Deepfake Video Detection based on 3D Convolutional Neural Networks[J].Computer Science,2021,48(7):86-92. [21] WANG T Y,CHENG H,CHOW K P,et al.Deep Convolutional Pooling Transformer for Deepfake Detection[J].ACM Transactions on Multimedia Computing,Communications,and Applications,2023,19(6):1-20. [22] HSU C C,ZHUANG Y X,LEE C Y.Deep Fake Image Detectionbased on Pairwise Learning[J].Applied Sciences,2020,10(1):370. [23] DANG H,LIU F,STEHOUWER J,et al.On the Detection of Digital Face Manipulation[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Re-cognition.2020:5780-5789. [24] RAHMOUNI N,NOZICK V,YAMAGISHI J,et al.Distinguishing Computer Graphics from Natural Images using Convolution Neural Networks[C]//Proceedings of the IEEE Workshop on Information Forensics and Security.2017:1-6. [25] ZHU S H,HU J J,SHI Z.LocalAbnormal Behavior Detection based on Optical Flow and Spatio-temporal Gradient[J].Multimedia Tools and Applications,2016,75(15):9445-9459. [26] FU B,LI W H,CHEN B,et al.Abnormal Behavior Detectionbased on Weighted Energy of Optical Flow[J].Journal of Jilin University(Engineering and Technology Edition),2013,43(6):1644-1649. [27] ZHANG K P,ZHANG Z P,LI Z F,et al.Joint Face Detection and Alignment using Multitask Cascaded Convolutional Networks[J].IEEE Signal Processing Letters,2016,23(10):1499-1503. [28] BATTITI R,AMALDI E,KOCH C.Computing Optical Flow Across Multiple Scales:An adaptive coarse-to-fine strategy[J].International Journal of Computer Vision,1991,6(2):133-145. [29] LI Y Z,YANG X,SUN P,et al.Celeb-df:ALarge-scale Chal-lenging Dataset for Deepfake Forensics[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2020:3204-3213. [30] LI Y Z,LYU S W.Exposing Deepfake Videos by Detecting Face Warping Artifacts[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops.2019:46-52. [31] SANDLER M,HOWARD A,ZHU M L,et al.Mobilenetv2:Inverted Residuals and Linear Bottlenecks[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2018:4510-4520. [32] DENG L W,SUO H F,LI D J.Deepfake Video Detection based on EfficientNet-V2 Network[J].Computational Intelligence and Neuroscience,2022:1-13.https://doi.org/10.1155/2022/3441549. [33] COCCOMINI D A,MESSINA N,GENNARO C,et al.Combining EfficientNet and Vision Transformers for Video Deepfake Detection[C]//Proceedings of the 21st International Conference on Image Analysis and Processing.2022:219-229. [34] WANG Y H,DANTCHEVA A.AVideo is Worth More than 1000 Lies.Comparing 3DCNN Approaches for Detecting Deepfake[C]//Proceedings of the 15th IEEE International Confe-rence on Automatic Face and Gesture Recognition.2020:515-519. |
[1] | ZHANG Huazhong, PAN Yuekai, TU Xiaoguang, LIU Jianhua, XU Luopeng, ZHOU Chao. Facial Expression Recognition Integrating 3D Facial Dynamic Information and Optical Flow Information [J]. Computer Science, 2024, 51(6A): 230700210-7. |
[2] | XU Bangwu, WU Qin, ZHOU Haojie. Appearance Fusion Based Motion-aware Architecture for Moving Object Segmentation [J]. Computer Science, 2024, 51(3): 155-164. |
[3] | JIANG Sheng, ZHU Jianhong. Face Micro-expression Recognition Method Based on ME-ResNet [J]. Computer Science, 2024, 51(11A): 231000053-7. |
[4] | ZHAO Zheng-peng, LI Jun-gang, PU Yuan-yuan. Low-light Image Enhancement Based on Retinex Theory by Convolutional Neural Network [J]. Computer Science, 2022, 49(6): 199-209. |
[5] | LENG Jia-xu, TAN Ming-pi, HU Bo, GAO Xin-bo. Video Anomaly Detection Based on Implicit View Transformation [J]. Computer Science, 2022, 49(2): 142-148. |
[6] | MENG Xiang-yu, XUE Xin-wei, LI Wen-lin, WANG Yi. Motion-estimation Based Space-temporal Feature Aggregation Network for Multi-frames Rain Removal [J]. Computer Science, 2021, 48(5): 170-176. |
[7] | WANG Kun-lun, LIU Wen-can, HE Xiao-hai, QING Lin-bo, WU Xiao-hong. Motion Feature Descriptor for Abnormal Behavior Detection [J]. Computer Science, 2020, 47(4): 119-124. |
[8] | WANG Zheng-ning, ZHOU Yang, LV Xia, ZENG Fan-wei, ZHANG Xiang, ZHANG Feng-jun. Improved MDP Tracking Method by Combining 2D and 3D Information [J]. Computer Science, 2019, 46(3): 97-102. |
[9] | XU Deng, HUANG Xiao-dong. Fire Images Features Extraction Based on Improved Two-stream Convolution Network [J]. Computer Science, 2019, 46(11): 291-296. |
[10] | HUANG Jin-guo, LIU Tao, ZHOU Xian-chun, YAN Xi-jun. Detection for Group Riot Activity Based on Change Analysis of Group Motion Pattern [J]. Computer Science, 2018, 45(9): 314-319. |
[11] | CHEN Cheng, CHANG Kan, MO Cai-wang, LI Tian-yi and QIN Tuan-fa. Single Video Super-resolution Algorithm Based on Non-local Means and Total Variation Minimization [J]. Computer Science, 2018, 45(3): 263-267. |
[12] | LIU Tao, ZHOU Xian-chun, YAN Xi-jun. LDA Facial Expression Recognition Algorithm Combining Optical Flow Characteristics with Gaussian [J]. Computer Science, 2018, 45(10): 286-290. |
[13] | TANG Ying and SUN Kang-gao. Video Stylization Based on Kinect Depth Information [J]. Computer Science, 2017, 44(Z6): 192-197. |
[14] | LUO Zheng-ping, LIU Yan-jun and YANG Tian-qi. Gait Recognition Based on Decomposition of Optical Flow Components [J]. Computer Science, 2016, 43(9): 295-300. |
[15] | LIN Jie and LIN La. Detection Method for Group Riot Activity Based on Change Frequency of Optical Flow’s Magnitude [J]. Computer Science, 2016, 43(5): 283-287. |
|