Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 240200045-9.doi: 10.11896/jsjkx.240200045
• Big Data & Data Science • Previous Articles Next Articles
WANG Jiahao, LI Wenbin, GUO Shiyao, XIANG Ping
CLC Number:
[1]FANG Z X,HUANG S Q,SU R X,et al.Detecting Hierarchical Congestion Intervals Based on the Fusion of Multi-source Highway Data[J].Geomatics and Information Science of Wuhan University,2020,45(5):682-690. [2]HSUEH Y L,YANG Y R.A short-term traffic speed prediction model based on LSTM networks [J].International Journal of Intelligent Transportation Systems Research,2021,19(3):510-524. [3]MAKRIDAKIS S,HIBON M.ARMA models and the Box-Jenkins methodology[J].Journal of Forecasting,1997,16:147-163. [4]CHEN J,LI D,ZHANG G,et al.Localized space-time autore-gressive parameters estimation for traffic flow prediction in urban road networks[J].Applied Sciences,2018,8:277. [5]ZIVOT E,WANG J.Vector autoregressive models for multivariate time series[C]//Modeling Financial Time Series with S-Plus©;Springer:New York,NY,USA,2006:385-429. [6]ZHENG Z,SU D.Short-term traffic volume forecasting:Ak-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm[J].Transportation Research Part C Emerging Technologies,2014,43:143-157. [7]WU C H,HO J M,LEE D T.Travel-time prediction with support vector regression[J].IEEE Transactions on Intelligent Transportation Systems,2004,5:276-281. [8]LIPPI M,BERTINI M,FRASCONI P.Short-term traffic flow forecasting:An experimental comparison of time-series analysis and supervised learning[J].IEEE Transactions on Intelligent Transportation Systems,2013,14: 871-882. [9]CHEN W,CHEN L,XIE Y,et al.Multi-Range Attentive Bi-component Graph Convolutional Network for Traffic Forecasting[J].arXiv:1911.12093,2019. [10]LV Y,DUAN Y,KANG W,et al.Traffic flow prediction with big data: A deep learning approach[J].IEEE Transactions on Intelligent Transportation Systems,2014,16:865-873. [11]LUO X,LI D,YANG Y,et al.Spatiotemporal traffic flow prediction with KNN and LSTM[J].Journal of Advanced Transportation,2019,2019:4145353. [12]HOCHREITER S,SCHMIDHUBERJ.Long short-term memory[J].Neural Computer,1997,9:1735-1780. [13]YU R,LI Y,SHAHABI C,DEMIRYUREK U,et al.Deeplearning:A generic approach for extreme condition traffic forecasting[C]//Proceedings of the 2017 SIAM International Conference on Data Mining.Houston,TX,USA,2017:777-785. [14]CUI Z,KE R,WANG Y.Deep stacked bidirectional and unidirectional LSTM recurrent neural network for network-wide traffic speed prediction[C]//Proceedings of the 6th Interna-tional Workshop on Urban Computing(UrbComp 2017).Halifax,NS,Canada,2017. [15]ZHANG J,ZHENG Y,QI D.Deep spatio-temporal residual networks for citywide crowd flows prediction[C]//Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,San Francisco,CA,USA,2017. [16]LIU P,ZHANG Y,KONG D,et al.Improved Spatio-Temporal Residual Networks for Bus Traffic Flow Prediction[J].Applied Science,2019,9:615. [17]DU S,LI T,GONG X,et al.A hybrid method for traffic flow forecasting using multimodal deep learning[J].arXiv:1803.02099,2018. [18]YAO H,TANG X,WEI H,et al.Modeling spatial-temporal dynamics for traffic prediction[J].arXiv:1803.01254,2018. [19]YAO H,WU F,KE J,et al.Deep multi-view spatial-temporal network for taxi demand prediction[C]//Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,New Orleans,LA,USA,2018. [20]WU Z,PAN S,CHEN F,et al.A comprehensive survey ongraph neural networks[J].arXiv:1901.00596,2019. [21]BRUNA J,ZAREMBA W,SZLAM A,et al.Spectral networks and locally connected networks on graphs[J].arXiv:1312.6203,2013. [22]DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutional neural networks on graphs with fast localized spectral filtering[C]//Advances in Neural Information Processing Systems;Neural Information Processing Systems(NIPS).Barcelona,Spain,2016:3844-3852. [23]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [24]ATWOOD J,TOWSLEYD.Diffusion-convolutional neural networks[C]//Advances in Neural Information Processing Systems,Neural Information Processing Systems(NIPS).Barcelona,Spain,2016:1993-2001. [25]GILMER J,SCHOENHOLZ S S,RILEY P F,et alNeural message passing for quantum chemistry[C]//Proceedings of the 34th International Conference on Machine Learning.Sydney,Australia,2017,70:1263-1272. [26]HAMILTON W,YING Z,LESKOVEC J.Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems;Neural Information Processing Systems(NIPS).Long Beach,CA,USA,2017:1024-1034. [27]GROVER A,LESKOVEC J.node2vec:Scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mi-ning.San Francisco,CA,USA,2016:855-864. [28]CUI P,WANG X,PEI J,et al.A survey on network embedding[J].IEEE Transactions on Knowledge and Data Engineering,2018,31:833-852. [29]LI Y,YU R,SHAHABI C,LIU Y.Diffusion Convolutional Recurrent Neural Network:Data-Driven Traffic Forecasting[C]//Proceedings of the International Conference on Learning Representations(ICLR'18).Vancouver,BC,Canada,30 April-3 May 2018. [30]FANG S,ZHANG Q,MENG G,et al.Gstnet:Global spatial-temporal network for traffic flow prediction[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence.Macao,China.2019:10-16. [31]YU B,YIN H,ZHU Z.Spatio-temporal Graph ConvolutionalNetworks:A Deep Learning Framework for Traffic Forecasting[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence(IJCAI).Stockholm,Sweden,2018. [32]PAN Z,LIANG Y,WANGW,et al.Urban Traffic Prediction from Spatio-Temporal Data Using Deep Meta Learning[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.Anchorage,AK,USA2019:1720-1730. [33]WU Z,PAN S,LONG G,et al.Graph WaveNet for Deep Spatial-Temporal Graph Modeling[J].arXiv:1906.00121,2019. [34]OORD A V D,DIELEMAN S,ZEN H,et al.Wavenet:A gene-rative model for raw audio[J].arXiv:1609.03499,2016. [35]CHEN W,CHEN L,XIE Y,et al.Multi-Range Attentive Bi-component Graph Convolutional Network for Traffic Forecasting[J].arXiv:1911.12093,2019. [36]YUAN J,ZHENG Y,XIE X.Discovering regions of different functions in a city using human mobility and POIs[C]//Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(SIGKDD).Beijing,China:ACM,2012:186-194. |
[1] | BAO Kainan, ZHANG Junbo, SONG Li, LI Tianrui. ST-WaveMLP:Spatio-Temporal Global-aware Network for Traffic Flow Prediction [J]. Computer Science, 2024, 51(5): 27-34. |
[2] | WANG Ming, PENG Jian, HUANG Fei-hu. Multi-time Scale Spatial-Temporal Graph Neural Network for Traffic Flow Prediction [J]. Computer Science, 2022, 49(8): 40-48. |
[3] | ZHANG De-gan, YANG Peng, ZHANG Jie, GAO Jin-xin, ZHANG Ting. New Method of Traffic Flow Forecasting of Connected Vehicles Based on Quantum Particle Swarm Optimization Strategy [J]. Computer Science, 2020, 47(11A): 327-333. |
[4] | KONG Fan-yu, ZHOU Yu-feng, CHEN Gang. Traffic Flow Prediction Method Based on Spatio-Temporal Feature Mining [J]. Computer Science, 2019, 46(7): 322-326. |
[5] | SHEN Xia-jiong, ZHANG Jun-tao, HAN Dao-jun. Short-term Traffic Flow Prediction Model Based on Gradient Boosting Regression Tree [J]. Computer Science, 2018, 45(6): 222-227. |
[6] | . Fuzzy Neural Networks Based on IPSO for Traffic Flow Prediction [J]. Computer Science, 2012, 39(10): 190-192. |
|