Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 240300045-8.doi: 10.11896/jsjkx.240300045
• Image Processing & Multimedia Technology • Previous Articles Next Articles
HE Weilong1, SU Lingli1, GUO Bingxuan2, LI Maosen3, HAO Yan1
CLC Number:
[1]FANG L P,HE H J,ZHOU G M.A Review of Object Detection Algorithm Research [J].Computer Engineering and Applications,2018,54(13):11-18,33. [2]WU Q,WANG T,WANG H W,et al.A Review of Modern Intelligent Video Surveillance Research [J].Computer Application Research,2016,33(6):1601-1606. [3]ZHANG G Y,XIANG H,ZHAO Y.A review of research oncomputer vision based autonomous driving algorithms [J].Journal of Guizhou Normal University,2016,32(6):1674-7798. [4]LI Q H,LONG X F,NONG Z L,et al.Clinical Application of Digital Medicine 3D Reconstruction Technology in Closed Abdominal Injury in Children [J].Chinese and Foreign Medical Research,2021,19(3):191-193. [5] MARR D,POGGIO T.A computational theory of human stereo vision[J].Proceedings of the Royal Society of London.Series B.Biological Sciences,1979,204(1156):301-328. [6]BARNARD S T,FISCHLER M A.Computational stereo[J].ACM Computing Surveys(CSUR),1982,14(4):553-572. [7]ZHANG Y W,HU K,WANG P S.A Review of 3D Reconstruction Algorithm Research [J].Nanjing Information Technology Journal of Cheng University(Natural Science Edition),2020,12(5):75-83. [8]YOON K J,KWEON I S.Adaptive support-weight approach for correspondence search[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(4):650-656. [9]GERRITS M,BEKAERT P.Local stereo matching with seg-mentation-based outlier rejection[C]//The 3rd Canadian Conference on Computer and Robot Vision (CRV'06).IEEE,2006:66-66. [10]LASKOWSKI Ł.A novel hybrid-maximum neural network instereo-matching process[J].Neural Computing and Applications,2013,23(7):2435-2450. [11]ZBONTAR J,LECUN Y.Stereo matching by training a convolutional neural network to compare image patches[J].J.Mach.Learn.Res.,2016,17(1):2287-2318. [12]MAYER N,ILG E,HAUSSER P,et al.A large dataset to train convolutional networks for disparity,optical flow,and scene flow estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:4040-4048. [13]PANG J,SUN W,REN J S J,et al.Cascade residual learning:A two-stage convolutional neural network for stereo matching[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops.2017:887-895. [14]KENDALL A,MARTIROSYAN H,DASGUPTA S,et al.End-to-end learning of geometry and context for deep stereo regression[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:66-75. [15]CHANG J R,CHEN Y S.Pyramid stereo matching network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:5410-5418. [16]TONIONI A,TOSI F,POGGI M,et al.Real-time self-adaptive deep stereo[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:195-204. [17]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Image Net classification with deep convolutional neural networks[C]// International Conference on Neural Information Processing Systems.Curran Associates Inc.,2012:1097-1105. [18]HE K,ZHANG X,REN S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [19]HUANG G,LIU Z,WEINBERGER K Q,et al.Densely con-nected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017. [20]EIGEN D,PUHRSCH C,FERGUS R.Depth map predictionfrom a single image using a multi-scale deep network[C]//Advances in Neural Information Processing Systems.2014:2366-2374. [21]EIGEN D,FERGUS R.Predicting depth,surface normals and semantic labels with a common multi-scale convolutional architecture[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:2650-2658. [22]SHELHAMER E,BARRON J T,DARRELL T.Scene intrinsics and depth from a single image[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops.2015:37-44. [23]FU H,GONG M,WANG C,et al.Deep ordinal regression network for monocular depth estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:2002-2011. [24]WOFK D,MA F,YANG T J,et al.Fastdepth:Fast monocular depth estimation on embedded systems[C]//2019 International Conference on Robotics and Automation (ICRA).IEEE,2019:6101-6108. [25]LONG J,SHELHAMER E,DARRELL T.Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:3431-3440. [26]ZHAO H,SHI J,QI X,et al.Pyramid scene parsing network[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:2881-2890. [27]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Semantic image segmentation with deep convolutional nets and fully connected crfs[J].arXiv:1412.7062,2014. [28]CHEN L C,PAPANDREOU G,KOKKINOS I,et al.Deeplab:Semantic image segmentation with deep convolutional nets,atrous convolution,and fully connected crfs[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,40(4):834-848. [29]CHEN L C,PAPANDREOU G,SCHROFF F,et al.Rethinking atrous convolution for semantic image segmentation[J].arXiv:1706.05587,2017. [30]CHEN L C,ZHU Y,PAPANDREOU G,et al.Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:801-818. |
[1] | YANG Shuqi, HAN Junling, KANG Xiaodong, YANG Jingyi, GUO Hongyang, LI Bo. Improved vnet Model for 3D Liver CT Image Segmentation [J]. Computer Science, 2024, 51(6A): 230400038-6. |
[2] | GUO Hongyang, CHENG Qian, KANG Xiaodong, YANG Jingyi, YANG Shuqi, LI Fang, ZHANG Rui. Multiple Attention-guided Mechanisms for Ultrasound Breast Cancer Tumor Image Segmentation [J]. Computer Science, 2024, 51(6A): 230500004-6. |
[3] | SHAN Xinxin, LI Kai, WEN Ying. Medical Image Segmentation Network Integrating Full-scale Feature Fusion and RNN with Attention [J]. Computer Science, 2024, 51(5): 100-107. |
[4] | WU Xiaoqin, ZHOU Wenjun, ZUO Chenglin, WANG Yifan, PENG Bo. Salient Object Detection Method Based on Multi-scale Visual Perception Feature Fusion [J]. Computer Science, 2024, 51(5): 143-150. |
[5] | SONG Hao, MAO Kuanmin, ZHU Zhou. Algorithm of Stereo Matching Based on GAANET [J]. Computer Science, 2024, 51(4): 229-235. |
[6] | HUANG Wenke, TENG Fei, WANG Zidan, FENG Li. Image Segmentation Based on Deep Learning:A Survey [J]. Computer Science, 2024, 51(2): 107-116. |
[7] | LUO Huilan, GUO Yuchen. Gaussian-bias Self-attention and Cross-attention Based Module for Medical Image Segmentation [J]. Computer Science, 2024, 51(11A): 240300071-9. |
[8] | XU Haidong, ZHANG Zili, HU Xinrong, PENG Tao , ZHANG Jun. Stereo Matching Network Based on Enhanced Superpixel Sampling [J]. Computer Science, 2024, 51(11A): 231100005-7. |
[9] | YE Ruiwen, WANG Baohui. 3D Reconstruction Algorithm for Lower Limb X-ray Images Based on Generative AdversarialNetworks [J]. Computer Science, 2024, 51(11A): 230900089-7. |
[10] | WANG Libin, WANG Shumei. Fundus Vascular Image Segmentation Algorithm Based on Attention Mechanism [J]. Computer Science, 2024, 51(11A): 231000003-6. |
[11] | ZHANG Xiao, DONG Hongbin. Lightweight Multi-view Stereo Integrating Coarse Cost Volume and Bilateral Grid [J]. Computer Science, 2023, 50(8): 125-132. |
[12] | QI Xuanlong, CHEN Hongyang, ZHAO Wenbing, ZHAO Di, GAO Jingyang. Study on BGA Packaging Void Rate Detection Based on Active Learning and U-Net++ Segmentation [J]. Computer Science, 2023, 50(6A): 220200092-6. |
[13] | LIU Yao, GUAN Lihe. Superpixel Segmentation Iterative Algorithm Based on Ball-k-means Clustering [J]. Computer Science, 2023, 50(6A): 220600114-7. |
[14] | YANG Jingyi, LI Fang, KANG Xiaodong, WANG Xiaotian, LIU Hanqing, HAN Junling. Ultrasonic Image Segmentation Based on SegFormer [J]. Computer Science, 2023, 50(6A): 220400273-6. |
[15] | BAI Xuefei, MA Yanan, WANG Wenjian. Segmentation Method of Edge-guided Breast Ultrasound Images Based on Feature Fusion [J]. Computer Science, 2023, 50(3): 199-207. |
|