Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240400151-10.doi: 10.11896/jsjkx.240400151
• Image Processing & Multimedia Technology • Previous Articles Next Articles
TANG Lijun , YANG Zheng, ZHAO Nan, ZHAI Suwei
CLC Number:
[1]DING G G,GUO Y C,ZHOU J.Collective matrix factorization hashing for multimodal data[C]//Proceedings IEEE Conf.Comput.Vis.Pattern Recognit..2014:2075-2082. [2]SU S P,ZHONG Z S,ZHANG C.Deep joint-semantics reconstructing hashing for large-scale unsupervised cross-modal retrieval[C]//Proceedings IEEE/CVF Int.Conf.Comput.Vis..2019:3027-3035. [3]YANG D J,WU D Y,ZHANG W Q,et al.Deep semantic-alignment hashing for unsupervised cross-modal retrieval[C]//Proceedings 2020 Int.Conf.Multimed.Retr..2020:44-52. [4]LIU S,QIAN S S,GUAN Y,et al.Joint-modal distribution-based similarity hashing for large-scale unsupervised deep cross-modal retrieval[C]//Proceedings 43rd Int.ACM SIGIR Conf.Res.Dev.Inf.Retr..2020:1379-1388. [5]LIN Z J,DING G G,HU M Q,et al.Semantics-preserving hashing for cross-view retrieval[C]//Proceedings IEEE Conf.Comput.Vis.Pattern Recognit..2015:3864-3872. [6]LI T Y,YANG X C,WANG B,et al.bi-CMR:Bidirectional reinforcement guided hashing for effective cross-modal retrieval[C]//Proceedings AAAI Conf.Artif.Intell..2022:10275-10282. [7]RADFORD A,KIM J W,HALLACY C,et al.Learning transferable visual models from natural language supervision,presented[J].Int.Conf.Mach.Learn..2021:8748-8763. [8]SAUER A,KARRAS T,LAINE S,et al.Stylegan-t:Unlocking the power of gans for fast large-scale text-to-image synthesis[J].arXiv:2301.09515,2023. [9]CHEN R N,et al.Clip2scene:Towards label-efficient 3d scene understanding by clip[C]//Proceedings IEEE/CVF Conf.Comput.Vis.Pattern Recognit..2023:7020-7030. [10]YU W W,LIU Y L,HUA W,et al.Turning a clip model into a scene text detector[C]//Proceedings IEEE/CVF Conf.Comput.Vis.Pattern Recognit..2023:6978-6988. [11]HE K M,CHEN X L,XIE S N,et al.Masked autoencoders are scalable vision learners[C]//Proceedings IEEE/CVF Conf.Comput.Vis.Pattern Recognit..2022:16000-16009. [12]LI Y H,FAN H Q,HU R H,et al.Scaling language-image pre-training via masking[C]//Proceedings IEEE/CVF Conf.Comput.Vis.Pattern Recognit..2023:23390-23400. [13]MANDAL D,CHAUDHURY K N,BISWAS S.Generalized semantic preserving hashing for n-label cross-modal retrieval[C]//Proceedings IEEE Conf.Comput.Vis.Pattern Recognit..2017:4076-4084. [14]WANG Y X,CHEN Z D,LUO X,et al.High-dimensional sparse cross-modal hashing with fine-grained similarity embedding[C]//Proceedings Web Conf..2021:2900-2909. [15]KUMAR S,UDUPA R.Learning hash functions for cross-view similarity search,” presented at 22nd Int[J].Joint Conf.Artif.Intell.,2011. [16]WANG W W,SHEN Y M,ZHANG H F,et al.Set and rebase:determining the semantic graph connectivity for unsupervised cross-modal hashing[C]//Proceedings 29th Int.Joint Conf.Artif.Intell..2021:853-859. [17]LI X L,HU D,NIE F P.Deep binary reconstruction for cross-modal hashing[C]//Proceedings 25th ACM Int.Conf.Multimedia.2017:1398-1406. [18]YU J,ZHOU H,ZHAN Y B,et al.Deep graph-neighbor coherence preserving network for unsupervised cross-modal hashing[C]//Proceedings AAAI Conf.Artif.Intell..2021:4626-4634. [19]TU R C,et al.Unsupervised cross-modal hashing via semantic text mining[J].IEEE Trans Multimedia,2023. [20]XIA X Y,DONG G H,LI F L,et al.When clip meets cross-modal hashing retrieval:A new strong baseline[J].Inf.Fusion,2023,100:101968. [21]JIN L,LI K,HU H,et al.Semantic neighbor graph hashing for multimodal retrieval[J].IEEE Trans.Image Process.,2017,27(3):1405-1417. [22]TANG J,WANG K,SHAO L.Supervised matrix factorization hashing for cross-modal retrieval[J].IEEE Trans.Image Process.,2016,25(7):3157-3166. [23]LIU X,HU Z K,LING H B,et al.Mtfh:A matrix tri-factorization hashing framework for efficient cross-modal retrieval[J].IEEE Trans.Pattern Anal.Mach.Intell.,2019,43(3):964-981. [24]WANG Y X,LUO X,NIE L Q,et al.Batch:A scalable asymmetric discrete cross-modal hashing[J].IEEE Trans.Knowl.Data Eng.,2020,33(11):3507-3519. [25]JIANG Q Y,LI W J.Deep cross-modal hashing[C]//Procee-dings IEEE Conf.Comput.Vis.Pattern Recognit..2017:3232-3240. [26]XIE D,DENG C,LI C,et al.Multi-task consistency-preserving adversarial hashing for cross-modal retrieval[J].IEEE Trans.Image Process.,2020,29:3626-3637. [27]XU R Q,LI C,YAN J C,et al.Graph convolutional networkhashing for cross-modal retrieval[C]//IJCAI,2019.2019:982-988. [28]TU R C,MAO X L,MA B,et al.Deep cross-modal hashing with hashing functions and unified hash codes jointly learning[J].IEEE Trans.Knowl.Data Eng.,2020,34(2):560-572. [29]BAI C,ZENG C,MA Q,et al.Deep adversarial discrete hashing for cross-modal retrieval[C]//Proceedings 2020 Int.Conf.Multimed.Retr..2020:525-531. [30]ZENG Z X,MAO W J.A comprehensive empirical study of vision-language pre-trained model for supervised cross-modal retrieval[J].arXiv:2201.02772,2022. [31]HUISKES M J,LEW M S.The mir flickr retrieval evaluation[C]//Proceedings 1st ACM Int.Conf.Multimed.Inf.Retr..2008:39-43. [32]CHUA T S,TANG J H,HONG R C,et al.Nus-wide:a real-world web image database from national university of singapore[C]//Proceedings ACM Int.Conf.Image Video Retr..2009:1-9. [33]LIN T Y.Microsoft coco:Common objects in context[C]//Computer Vision-ECCV 2014:13th European Conference,Zurich,Switzerland,September 6-12,2014,Proceedings,Part V 13.Springer,2014:740-755. [34]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [35]ZHENG C Q,ZHU L,CHENG Z Y,et al.Adaptive partialmulti-view hashing for efficient social image retrieval[J].IEEE Trans.Multimedia,2020,23:4079-4092. [36]ZHANG D L,WU X J,YU J.Label consistent flexible matrix factorization hashing for efficient cross-modal retrieval[J].ACM Trans.Multimed.Comput.Commun.Appl.,2021,17(3):1-18. [37]LUO K Y,ZHANG C,LI H X,et al.Adaptive marginalized semantic hashing for unpaired cross-modal retrieval[J].IEEE Trans.Multimedia,2023. [38]CHEN Y,ZHANG H,TIAN Z B,et al.Enhanced discretemulti-modal hashing:More constraints yet less time to learn[J].IEEE Trans.Knowl.Data Eng.,2020,34(3):1177-1190. [39]HU Z K,CHEUNG Y M,LI M K,et al.Joint semantic preserving sparse hashing for cross-modal retrieval[J].IEEE Trans.Circuits Syst.Video Technol.,2023. [40]LI C,DENG C,LI N,et al.Self-supervised adversarial hashing networks for cross-modal retrieval[C]//Proceedings IEEE Conf.Comput.Vis.Pattern Recognit..2018:4242-4251. [41]ZHANG Z,LUO H Y,ZHU L,et al.Modality-invariant asymmetric networks for cross-modal hashing[J].IEEE Trans.Knowl.Data Eng.,2022,35(5):5091-5104,. [42]YU E,MA J H,SUN J D,et al.Deep discrete cross-modal hashing with multiple supervision[J].Neurocomputing,2022,486:215-224. [43]LI X,YU J,LU H C,et al.Mafh:Multilabel aware framework for bit-scalable cross-modal hashing[J].Knowl.Based Syst.,2023,279:110922. [44]HINTON G E,SRIVASTAVA N,KRIZHEVSKY A,et al.Improving neural networks by preventing co-adaptation of feature detectors[J].arXiv:1207,0580,2012. [45]KO Y.A study of term weighting schemes using class information for text classification[C]//Proceedings 35th Int.ACM SIGIR Conf.Res.Dev.Inf.Retr..2012:1029-1030. |
[1] | ZHANG Changfan, MA Yuanyuan, LIU Jianhua, HE Jing. Dual Gating-Residual Feature Fusion for Image-Text Cross-modal Retrieval [J]. Computer Science, 2023, 50(6A): 220700030-7. |
[2] | YANG Xiaoyu, LI Chao, CHEN Shunyao, LI Haoliang, YIN Guangqiang. Text-Image Cross-modal Retrieval Based on Transformer [J]. Computer Science, 2023, 50(4): 141-148. |
[3] | GU Baocheng, LIU Li. Cross-modal Hash Retrieval Based on Text-guided Image Semantic Fusion [J]. Computer Science, 2023, 50(11A): 221100191-6. |
[4] | HAN Hui-zhen, LIU Li-bo. Lycium Barbarum Pest Retrieval Based on Attention and Visual Semantic Reasoning [J]. Computer Science, 2022, 49(11A): 211200087-6. |
[5] | LIU Li-bo, GOU Ting-ting. Cross-modal Retrieval Combining Deep Canonical Correlation Analysis and Adversarial Learning [J]. Computer Science, 2021, 48(9): 200-207. |
[6] | FENG Xia, HU Zhi-yi, LIU Cai-hua. Survey of Research Progress on Cross-modal Retrieval [J]. Computer Science, 2021, 48(8): 13-23. |
[7] | SUN Sheng-zi, GUO Bing-hui , YANG Xiao-bo. Embedding Consensus Autoencoder for Cross-modal Semantic Analysis [J]. Computer Science, 2021, 48(7): 93-98. |
[8] | DENG Yi-jiao, ZHANG Feng-li, CHEN Xue-qin, AI Qing, YU Su-zhe. Collaborative Attention Network Model for Cross-modal Retrieval [J]. Computer Science, 2020, 47(4): 54-59. |
[9] | SHAO Yang-xue, MENG Wei, KONG Deng-zhen, HAN Lin-xuan, LIU Yang. Cross-modal Retrieval Method for Special Vehicles Based on Deep Learning [J]. Computer Science, 2020, 47(12): 205-209. |
|