Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240500129-7.doi: 10.11896/jsjkx.240500129
• Image Processing & Multimedia Technology • Previous Articles Next Articles
LI Mingjie, HU Yi, YI Zhengming
CLC Number:
[1]CHATTERJEE R,CHATTERJEE A,ISLAM S K H,et al.An object detection-based few-shot learning approach for multimedia quality assessment[J].Multimedia Systems,2023,29(5):2899-2912. [2]WANG Z,LI H,ZHANG Z,et al.Attribute-and attention-guided few-shot classification[J].Multimedia Systems,2024,30(1):60. [3]LIU S,TANG Y,TIAN Y,et al.Visual driving assistance system based on few-shot learning[J].Multimedia Systems,2023,29(5):2853-2863. [4]ZHANG X C,CHEN P P,XING X L,et al.A data augmentation method built on GPT-2 model[J].CAAI Transactions on Intelligent Systems,2024,19(1):209-216. [5]ANTONIOU A,STORKEY A,EDWARDS H.Data augmentation generative adversarial networks[J].arXiv:1711.04340,2017. [6] DUAN Y,HONG Y,NIU L,et al.Few-shot defect image generation via defect-aware feature manipulation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:571-578. [7]JIANG Y C,ZHU B.Data augmentation for remote sensing im-age based on generative adversarial networks under condition of few samples[J].Laser & Optoelectronics Progress,2021,58(8):238-244. [8]HONG Y,NIU L,ZHANG J,et al.Matchinggan:Matching-based few-shot image generation[C]//2020 IEEE International Conference on Multimedia and Expo(ICME).IEEE,2020:1-6. [9]LIANG W,LIU Z,LIU C.Dawson:A domain adaptive few shot generation framework[J].arXiv:2001.00576,2020. [10]GU Z,LI W,HUO J,et al.Lofgan:Fusing local representations for few-shot image generation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:8463-8471. [11]KUMAR A,BHUNIA A K,NARAYAN S,et al.Cross-modula-ted few-shot image generation for colorectal tissue classification[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Springer,2023:128-137. [12]DUAN Y,NIU L,HONG Y,et al.WeditGAN:Few-shot image generation via latent space relocation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2024:1653-1661. [13]OJHA U,LI Y,EFROS A A,et al.Few-shot image generation via cross-domain correspondence[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:10743-10752. [14]YANG M,WANG Z,FENG W,et al.Improving Few-shot Image Generation by Structural Discrimination and Textural Modulation[C]//Proceedings of the 31st ACM International Conference on Multimedia.2023:7837-7848. [15]SEO J,KANG J S,PARK G M.LFS-GAN:Lifelong Few-Shot Image Generation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:11356-11366. [16]WANG Y,GONZALEZ-GARCIA A,BERGA D,et al.Mine-gan:effective knowledge transfer from gans to target domains with few images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:9332-9341. [17]KONG C,KIM J,HAN D,et al.Few-shot image generation with mixup-based distance learning[C]//European Conference on Computer Vision.Springer,2022:563-580. [18]ZHANG Z,LIU Y,HAN C,et al.Generalized one-shot domain adaptation of generative adversarial networks[J].Advances in Neural Information Processing Systems,2022,35:13718-13730. [19]XIAO J,LI L,WANG C,et al.Few shot generative model adaption via relaxed spatial structural alignment[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:11204-11213. [20]ZHOU Y,YUE Z,YE Y,et al.EqGAN:Feature EqualizationFusion for Few-shot Image Generation[J].arXiv:2307.14638,2023. [21]SHAO K,WANG M Z,WANG G Y.Transformer-based multiscale remote sensing semantic segmentation network [J].CAAI Transactions on Intelligent Systems,2024,19(4):920-929. [22]ZHANG S L,LEI T,WANG Y B,et al.A crowd counting network based on multi-scale pyramid Transformer[J].CAAI Transactions on Intelligent Systems,2024,19(1):67-78. [23]HE K,ZHANG X,REN S,et al.Spatial pyramid pooling in deep convolutional networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916. [24]KARRAS T,LAINE S,AITTALA M,et al.Analyzing and improving the image quality of stylegan[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:8110-8119. [25]ZHAO Y,CHANDRASEGARAN K,ABDOLLAHZADEH M,et al.Few-shot image generation via adaptation-aware kernel modulation[J].Advances in Neural Information Processing Systems,2022,35:19427-19440. [26]LIU H,ZHANG W,LI B,et al.Improving GAN training viafeature space shrinkage[J].arXiv:2303.01559,2023. [27]HEUSEL M,RAMSAUER H,UNTERTHINER T,et al.Gans trained by a two time-scale update rule converge to a local nash equilibrium[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:6629-6640. [28]JOCHER G,CHAURASIA A,QIU J..Ultralytics YOLO(Version 8.0.0) [Computer software[DB/OL].https://github.com/ultralytics/ultralytics,2023. [29]HU D D,ZHANG Z T.Road target detection algorithm for au-tonomous driving scenarios based on improved YOLOv5s[J].CAAI Transactions on Intelligent Systems,2024,19(3):653-660. |
[1] | LI Daicheng, LI Han, LIU Zheyu, GONG Shiheng. MacBERT Based Chinese Named Entity Recognition Fusion with Dependent Syntactic Information and Multi-view Lexical Information [J]. Computer Science, 2025, 52(6A): 240600121-8. |
[2] | HUANG Bocheng, WANG Xiaolong, AN Guocheng, ZHANG Tao. Transmission Line Fault Identification Method Based on Transfer Learning and Improved YOLOv8s [J]. Computer Science, 2025, 52(6A): 240800044-8. |
[3] | CHEN Qirui, WANG Baohui, DAI Chencheng. Research on Electrocardiogram Classification and Recognition Algorithm Based on Transfer Learning [J]. Computer Science, 2025, 52(6A): 240900073-8. |
[4] | LI Bo, MO Xian. Application of Large Language Models in Recommendation System [J]. Computer Science, 2025, 52(6A): 240400097-7. |
[5] | GONG Zian, GU Zhenghui, CHEN Di. Cross-subject Driver Fatigue Detection Based on Local and Global Feature Integrated Network [J]. Computer Science, 2025, 52(6): 200-210. |
[6] | TIAN Qing, KANG Lulu, ZHOU Liangyu. Class-incremental Source-free Domain Adaptation Based on Multi-prototype Replay andAlignment [J]. Computer Science, 2025, 52(3): 206-213. |
[7] | ZHANG Yusong, XU Shuai, YAN Xingyu, GUAN Donghai, XU Jianqiu. Survey on Cross-city Human Mobility Prediction [J]. Computer Science, 2025, 52(1): 102-119. |
[8] | HAN Wei, JIANG Shujuan, ZHOU Wei. Patch Correctness Verification Method Based on CodeBERT and Stacking Ensemble Learning [J]. Computer Science, 2025, 52(1): 250-258. |
[9] | ZHANG Jian, LI Hui, ZHANG Shengming, WU Jie, PENG Ying. Review of Pre-training Methods for Visually-rich Document Understanding [J]. Computer Science, 2025, 52(1): 259-276. |
[10] | WANG Jiabin, LUO Junren, ZHOU Yanzhong, WANG Chao, ZHANG Wanpeng. Survey on Event Extraction Methods:Comparative Analysis of Deep Learning and Pre-training [J]. Computer Science, 2024, 51(9): 196-206. |
[11] | TIAN Qing, LU Zhanghu, YANG Hong. Unsupervised Domain Adaptation Based on Entropy Filtering and Class Centroid Optimization [J]. Computer Science, 2024, 51(7): 345-353. |
[12] | CAO Yan, ZHU Zhenfeng. DRSTN:Deep Residual Soft Thresholding Network [J]. Computer Science, 2024, 51(6A): 230400112-7. |
[13] | GUI Haitao, WANG Zhongqing. Personalized Dialogue Response Generation Combined with Conversation State Information [J]. Computer Science, 2024, 51(6A): 230800055-7. |
[14] | DING Yi, WANG Zhongqing. Study on Pre-training Tasks for Multi-document Summarization [J]. Computer Science, 2024, 51(6A): 230300160-8. |
[15] | ZHANG Xinrui, YANG Jian, WANG Zhan. Thai Speech Synthesis Based on Cross-language Transfer Learning and Joint Training [J]. Computer Science, 2024, 51(6A): 230500174-7. |
|