Computer Science ›› 2025, Vol. 52 ›› Issue (3): 206-213.doi: 10.11896/jsjkx.240100166
• Database & Big Data & Data Science • Previous Articles Next Articles
TIAN Qing1,2,3, KANG Lulu1, ZHOU Liangyu1
CLC Number:
[1]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [2]CHEN G,CHEN K,ZHANG L,et al.VCANet:Vanishing-point-guided context-aware network for small road object detection[J].Automotive Innovation,2021,4:400-412. [3]XU Y,ZHANG Q,ZHANG J,et al.Vitae:Vision transformer advanced by exploring intrinsic inductive bias[J].Advances in Neural Information Processing Systems,2021,34:28522-28535. [4]ZHENG Z D,YANG Y.Rectifying pseudo label learning via uncertainty estimation for domain adaptive semantic segmentation[J].International of Computer Vision,2021,129(4):1106-1120. [5]TIAN Q,SUN H,MA C,et al.Heterogeneous domain adaptation with structure and classification space alignment[J].IEEE Transactions on Cybernetics,2021,52(10):10328-10338. [6]HOFFMAN J,TZENG E,PARK T,et al.Cycada:Cycle-consistent adversarial domain adaptation[C]//International Confe-rence on Machine Learning.2018:1989-1998. [7]ZHOU K B,TENG L Y,ZHANG W,et al.Discriminative label semantic guidance learning for domain adaptive retrieval[J].Journal of Chinese Computer Systems,2024,45(7):1639-1647. [8]DU Z,LI J,SU H,et al.Cross-domain gradient discrepancy mi-nimization for unsupervised domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:3937-3946. [9]PAN S J,TSANG I W,KWOK J T,et al.Domain adaptation via transfer component analysis[J].IEEE Transactions on Neural Networks,2010,22(2):199-210. [10]LONG M,CAO Z,WANG J,et al.Conditional adversarial do-main adaptation[C]//Proceedings of the 32nd International Conference on Neural Information Processing System.2018:1647-1657. [11]BOUSMALIS K,SILBERMAN N,DOHAN D,et al.Unsupervised pixel-level domain adaptation with generative adversarial networks[C]//Proceedings of the IEEE Conference on Compu-ter Vision and Pattern Recognition.2017:3722-3731. [12]LONG M,CAO Y,Wang J,et al.Learning transferable features with deep adaptation networks[C]//International Conference on Machine Learning.2015:97-105. [13]LIANG J,HU D,FENG J.Do we really need to access thesource data? source hypothesis transfer for unsupervised domain adaptation[C]//International Conference on Machine Learning.2020:6028-6039. [14]ZHANG Z,CHEN W,CHENG H,et al.Divide and contrast:Source-free domain adaptation via adaptive contrastive learning[J].Advances in Neural Information Processing Systems,2022,35:5137-5149. [15]DING N,XU Y,TANG Y,et al.Source-free domain adaptation via distribution estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:7212-7222. [16]LIANG J,HU D,WANG Y,et al.Source data-absent unsupervised domain adaptation through hypothesis transfer and labeling transfer[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,44(11):8602-8617. [17]CHU T,LIU Y,DENG J,et al.Denoised Maximum Classifier Discrepancy for Source-Free Unsupervised Domain Adaptation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:3472-3480. [18]JING M M,LI J J,LU K,et al.Visually source-free domain ada-ptation via adversarial style matching[J].IEEE Transactions on Image Processing,2024,33:1032-1044. [19]BELOUADAH E,POPESCU A,KANELLOS I.A comprehensive study of class incremental learning algorithms for visual tasks[J].Neural Networks,2021,135:38-54. [20]MASANA M,LIU X,TWARDOWSKI B,et al.Class-incremental learning:Survey and performance evaluation on image classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(5):5513-5533. [21]ZHAO B,XIAO X,GAN G J,et al.Maintaining discrimination and fairness in class incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:13208-13217. [22]HU X,TANG K,MIAO C,et al.Distilling causal effect of data in class-incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:3957-3966. [23]LIU Y,SCHIELE B,SUN Q.Rmm:Reinforced memory ma-nagement for class-incremental learning[J].Advances in Neural Information Processing Systems,2021,34:3478-3490. [24]BELOUADAH E,POPESCU A.IL2m:Class incremental lear-ning with dual memory[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:583-592. [25]LIU X,WU C,MENTA M,et al.Generative feature replay for class-incremental learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops.2020:226-227. [26]YANG S,WANG Y,et al.Generalized source-free domain adaptation[C]//Proceedings of the IEEE/CVF International Confe-rence on Computer Vision.2021:8978-8987. [27]YANG S,WANG Y X,et al.Exploiting the intrinsic neighborhood structure for source-free domain adaptation[J].Advances in Neural Information Processing Systems,2021,34:29393-29405. [28]WANG F,HAN Z,GONG Y,et al.Exploring domain-invariant parameters for source free domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:7151-7160. [29]TIAN J,ZHANG J,LI W,et al.VDM-DA:Virtual domain mo-deling for source data-free domain adaptation[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,32(6):3749-3760. [30]CHEN D,WANG D,DARREEL T,et al.Contrastive test-time adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:295-305. [31]WANG R,WU Z,WENG Z,et al.Cross-domain contrastivelearning for unsupervised domain adaptation[J].IEEE Transactions on Multimedia,2022,25:1665-1673. [32]TIAN Q,PENG S,MA T.Source-free unsupervised domainadaptation with trusted pseudo samples[J].ACM Transactions on Intelligent Systems and Technology,2023,14(2):1-17. [33]CAO Z,LONG M,WANG J,et al.Partial transfer learning with selective adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:2724-2732. [34]TIAN Q,CHU Y,SUN H Y,et al.Survey on Partial Domain Adaptation[J].Journal of Software,2023,34(12):5597-5613. [35]CAO Z,MA L,LONG M,et al.Partial adversarial domain adaptation[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:135-150. [36]SAHOO A,PANDA R,FERIS R,et al.Select,label,and mix:Learning discriminative invariant feature representations for partial domain adaptation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2023:4210-4219. [37]KUNDU J N,VENKATESH R M,VENKAT N,et al.Class-incremental domain adaptation[C]//European Conference on Computer Vision.2020:53-69. [38]LIN H,ZHANG Y,QIU Z,et al.Prototype-guided continualadaptation for class-incremental unsupervised domain adaptation[C]//European Conference on Computer Vision.2022:351-368. [39]SAENLO K,KULIS B,FRITZ M,et al.Adapting visual category models to new domains[C]//Proceedings of European Conference on Computer Vision.Springer,2010:213-226. [40]TZENG E,HOFFMAN J,SAENKO K,et al.Adversarial dis-criminative domain adaptation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:7167-7176. [41]GANIN Y,USTINOVA E,AJAKAN H,et al.Domain-adversarial training of neural networks[J].The Journal of Machine Learning Research,2016,17(1):2096-2030. [42]CAO Z,YOU K,LONG M,et al.Learning to transfer examples for partial domain adaptation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:2985-2994. [43]LIANG J,WANG Y,HU D,et al.A balanced and uncertainty-aware approach for partial domain adaptation[C]//European Conference on Computer Vision.Cham:Springer International Publishing,2020:123-140. |
[1] | YUAN Ye, CHEN Ming, WU Anbiao, WANG Yishu. Graph Anomaly Detection Model Based on Personalized PageRank and Contrastive Learning [J]. Computer Science, 2025, 52(2): 80-90. |
[2] | TIAN Qing, LIU Xiang, WANG Bin, YU Jiangsen, SHEN Jiashuo. Multi-source-free Domain Adaptation Based on Source Model Contribution Quantization [J]. Computer Science, 2025, 52(2): 116-124. |
[3] | LIU Yanlun, XIAO Zheng, NIE Zhenyu, LE Yuquan, LI Kenli. Case Element Association with Evidence Extraction for Adjudication Assistance [J]. Computer Science, 2025, 52(2): 222-230. |
[4] | ZHANG Yusong, XU Shuai, YAN Xingyu, GUAN Donghai, XU Jianqiu. Survey on Cross-city Human Mobility Prediction [J]. Computer Science, 2025, 52(1): 102-119. |
[5] | YE Lishuo, HE Zhixue. Multi-granularity Time Series Contrastive Learning Method Incorporating Time-Frequency Features [J]. Computer Science, 2025, 52(1): 170-182. |
[6] | TIAN Sicheng, HUANG Shaobin, WANG Rui, LI Rongsheng, DU Zhijuan. Contrastive Learning-based Prompt Generation Method for Large-scale Language Model ReverseDictionary Task [J]. Computer Science, 2024, 51(8): 256-262. |
[7] | HU Haibo, YANG Dan, NIE Tiezheng, KOU Yue. Graph Contrastive Learning Incorporating Multi-influence and Preference for Social Recommendation [J]. Computer Science, 2024, 51(7): 146-155. |
[8] | TIAN Qing, LU Zhanghu, YANG Hong. Unsupervised Domain Adaptation Based on Entropy Filtering and Class Centroid Optimization [J]. Computer Science, 2024, 51(7): 345-353. |
[9] | ZHANG Xinrui, YANG Jian, WANG Zhan. Thai Speech Synthesis Based on Cross-language Transfer Learning and Joint Training [J]. Computer Science, 2024, 51(6A): 230500174-7. |
[10] | CAO Yan, ZHU Zhenfeng. DRSTN:Deep Residual Soft Thresholding Network [J]. Computer Science, 2024, 51(6A): 230400112-7. |
[11] | YU Bihui, TAN Shuyue, WEI Jingxuan, SUN Linzhuang, BU Liping, ZHAO Yiman. Vision-enhanced Multimodal Named Entity Recognition Based on Contrastive Learning [J]. Computer Science, 2024, 51(6): 198-205. |
[12] | LI Yilin, SUN Chengsheng, LUO Lin, JU Shenggen. Aspect-based Sentiment Classification for Word Information Enhancement Based on Sentence Information [J]. Computer Science, 2024, 51(6): 299-308. |
[13] | WANG Jiahao, FU Yifu, FENG Hainan, REN Yuheng. Indoor Location Algorithm in Dynamic Environment Based on Transfer Learning [J]. Computer Science, 2024, 51(5): 277-283. |
[14] | CHEN Runhuan, DAI Hua, ZHENG Guineng, LI Hui , YANG Geng. Urban Electricity Load Forecasting Method Based on Discrepancy Compensation and Short-termSampling Contrastive Loss [J]. Computer Science, 2024, 51(4): 158-164. |
[15] | LIAO Jinzhi, ZHAO Hewei, LIAN Xiaotong, JI Wenliang, SHI Haiming, ZHAO Xiang. Contrastive Graph Learning for Cross-document Misinformation Detection [J]. Computer Science, 2024, 51(3): 14-19. |
|