Computer Science ›› 2025, Vol. 52 ›› Issue (4): 177-184.doi: 10.11896/jsjkx.240600007
• Computer Graphics & Multimedia • Previous Articles Next Articles
PENG Linna, ZHANG Hongyun, MIAO Duoqian
CLC Number:
[1]VAN G B,SCHAEFER-PROKOP C M,PROKOP M.Compu-ter-aided diagnosis:how to move from the laboratory to the clinic[J].Radiology,2011,261(3):719-732. [2]TONG T,WOLZ R,WANG Z H,et al.Discriminative dictionarylearning for abdominal multi-organ segmentation[J].Medical Image Analysis,2015,23(1):92-104. [3]OLIVEIRAB,QUEIRÓS S,MORAIS P,et al.A novel multi-atlas strategy with dense deformation field reconstruction for abdominal and thoracic multi-organ segmentation from computed tomography[J].Medical Image Analysis,2018,45:108-120. [4]CERROLAZAJ J,VILLANUEVA A,CABEZA R.Hierarchical multi-resolution decomposition of statistical shape models[J].Signal,Image and Video Processing,2015,9:1473-1490. [5]OKADA T,LINGURARU M G,HORI M,et al.Abdominalmulti-organ segmentation from CT images using conditional shape-location and unsupervised intensity priors[J].Medical Image Analysis,2015,26(1):1-18. [6]SINGH P,BOSE S S.A quantum-clustering optimization method for COVID-19 CT scan image segmentation[J].Expert Systems with Applications,2021,185:115637. [7]BOZKURT F,KÖSE C,SARI A.An inverse approach for automatic segmentation of carotid and vertebral arteries in CTA[J].Expert Systems with Applications,2018,93:358-375. [8]GIBSON E,GIGANTI F,HU Y P,et al.Automatic multi-organ segmentation on abdominal CT with dense V-networks[J].IEEE Transactions on Medical Imaging,2018,37(8):1822-1834. [9]RONNEBERGERO,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention.Me-dical Image Computing and Computer Assisted Intervention So-ciety,2015:234-241. [10]HEINRICHM P,OKTAY O,BOUTELDJA N.OBELISK-Net:Fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions[J].Medical Image Analysis,2019,54:1-9. [11]ZHANG L,ZHANG J,SHEN P,et al.Block level skip connections across cascaded V-Net for multi-organ segmentation[J].IEEE Transactions on Medical Imaging,2020,39(9):2782-2793. [12]FANG X,YAN P K.Multi-organ segmentation over partially la-beled datasets with multi-scale feature abstraction[J].IEEE Transactions on Medical Imaging,2020,39(11):3619-3629. [13]ISENSEE F,JAEGER P F,KOHL S A A,et al.nnU-Net:a self-configuring method for deep learning-based biomedical image segmentation[J].Nature Methods,2021,18(2):203-211. [14]ZHANG J P,XIE Y T,WANG Y,et al.Inter-slice context residual learning for 3D medical image segmentation[J].IEEE Transactions on Medical Imaging,2020,40(2):661-672. [15]SINHA A,DOLZ J.Multi-scale self-guided attention for medical image segmentation[J].IEEE Journal of Biomedical and Health Informatics,2020,25(1):121-130. [16]ZHOU Z W,SIDDIQUEE M M R,TAJBAKHSH N,et al.Unet++:Redesigning skip connections to exploit multiscale features in image segmentation[J].IEEE Transactions on Medical Imaging,2019,39(6):1856-1867. [17]JIN Q G,MENG Z P,SUN C M,et al.RA-UNet:A hybrid deep attention-aware network to extract liver and tumor in CT scans[J].Frontiers in Bioengineering and Biotechnology,2020,8:605132. [18]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems(NIPS’17).2017:6000-6010. [19]HATAMIZADEHA,TANG Y C,NATH V,et al.Unetr:Transformers for 3d medical image segmentation[C] //Procee-dings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2022:574-584. [20]HATAMIZADEH A,NATH V,TANG Y C,et al.Swin unetr:Swin transformers for semantic segmentation of brain tumors in mri images[C]//International MICCAI Brainlesion Workshop.2021:272-284. [21]LEE S,LEE M.MetaSwin:a unified meta vision transformermodel for medical image segmentation[J].PeerJ Computer Science,2024,10:e1762. [22]WANG L C,HUANG J H,XING X D,et al.Hybrid Swin Deformable Attention U-Net for Medical Image Segmentation[C]//2023 19th International Symp on Medical Information Processing and Analysis.2023:1-5. [23]HEIDARI M,KAZEROUNI A,SOLTANY M,et al.Hiformer:Hierarchical multi-scale representations using transformers for medical image segmentation[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2023:6202-6212. [24]LIU Z,LIN Y T,CAO Y,et al.Swin transformer:Hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:10012-10022. [25]IRSHAD S,GOMES D P S,KIM S T.Improved abdominalmulti-organ segmentation via 3D boundary-constrained deep neural networks[J].IEEE Access,2023,11:35097-35110. [26]GIBSON E,GIGANTI F,HU Y P,et al.Automatic multi-organ segmentation on abdominal CT with dense V-networks[J].IEEE Transactions on Medical Imaging,2018,37(8):1822-1834. |
[1] | ZHENG Xu, HUANG Xiangjie, YANG Yang. Reversible Facial Privacy Protection Method Based on “Invisible Masks” [J]. Computer Science, 2025, 52(5): 384-391. |
[2] | GAO Wei, WANG Lei, LI Jianan, LI Shuailong, HAN Lin. Operator Fusion Optimization for Deep Learning Compiler TVM [J]. Computer Science, 2025, 52(5): 58-66. |
[3] | MIAO Zhuang, CUI Haoran, ZHANG Qiyang, WANG Jiabao, LI Yang. Restoration of Atmospheric Turbulence-degraded Images Based on Contrastive Learning [J]. Computer Science, 2025, 52(5): 171-178. |
[4] | JIANG Wenwen, XIA Ying. Improved U-Net Multi-scale Feature Fusion Semantic Segmentation Network for RemoteSensing Images [J]. Computer Science, 2025, 52(5): 212-219. |
[5] | HE Chunhui, GE Bin, ZHANG Chong, XU Hao. Intelligent Error Correction Model for Chinese Idioms Fused with Fixed-length Seq2Seq Network [J]. Computer Science, 2025, 52(5): 227-234. |
[6] | HAN Daojun, LI Yunsong, ZHANG Juntao, WANG Zemin. Knowledge Graph Completion Method Fusing Entity Descriptions and Topological Structure [J]. Computer Science, 2025, 52(5): 260-269. |
[7] | DENG Ceyu, LI Duantengchuan, HU Yiren, WANG Xiaoguang, LI Zhifei. Joint Inter-word and Inter-sentence Multi-relationship Modeling for Review-basedRecommendation Algorithm [J]. Computer Science, 2025, 52(4): 119-128. |
[8] | KONG Jialin, ZHANG Qi, WEI Jianze, LI Qi. Adaptive Contextual Learning Method Based on Iris Texture Perception [J]. Computer Science, 2025, 52(4): 185-193. |
[9] | ZHOU Yi, MAO Kuanmin. Research on Individual Identification of Cattle Based on YOLO-Unet Combined Network [J]. Computer Science, 2025, 52(4): 194-201. |
[10] | HU Huijuan, QIN Yifeng, XU Heand LI Peng. An Improved YOLOv8 Object Detection Algorithm for UAV Aerial Images [J]. Computer Science, 2025, 52(4): 202-211. |
[11] | SUN Tanghui, ZHAO Gang, GUO Meiqian. Long-tail Distributed Medical Image Classification Based on Large Selective Nuclear Bilateral-branch Networks [J]. Computer Science, 2025, 52(4): 231-239. |
[12] | MENG Sijiang, WANG Hongxia, ZENG Qiang, ZHOU Yang. Multi-view and Multi-scale Fusion Attention Network for Document Image Forgery Localization [J]. Computer Science, 2025, 52(4): 327-335. |
[13] | LI Xiaolan, MA Yong. Study on Lightweight Flame Detection Algorithm with Progressive Adaptive Feature Fusion [J]. Computer Science, 2025, 52(4): 64-73. |
[14] | SHEN Yaxin, GAO Lijian , MAO Qirong. Semi-supervised Sound Event Detection Based on Meta Learning [J]. Computer Science, 2025, 52(3): 222-230. |
[15] | HAN Lin, WANG Yifan, LI Jianan, GAO Wei. Automatic Scheduling Search Optimization Method Based on TVM [J]. Computer Science, 2025, 52(3): 268-276. |
|