Computer Science ›› 2025, Vol. 52 ›› Issue (4): 64-73.doi: 10.11896/jsjkx.241000093
• Smart Embedded Systems • Previous Articles Next Articles
LI Xiaolan, MA Yong
CLC Number:
[1]CHEN J,HE Y,WANG J.Multi-feature fusion based fast videoflame detection[J].Building and Environment,2010,45(5):1113-1122. [2]DEVE K B,HANCKE G P,SILVA B J.Design of a smart fire detection system[C]//IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society.IEEE,2016:6205-6210. [3]WU Q Y,YAN Y Y,DU J,et al.Flame Detection AlgorithmBased on Multi-feature Fusion[J].Journal of Intelligent Systems,2015,10(2):240-247. [4]CORTES C,VAPNIK V.Support-vector networks[J].Machine learning,1995,20:273-297. [5]JIA Y,W H Q,HU Y,et al.Image-based Flame Recognition Based on Improved Hierarchical Clustering and SVM[J].Computer Engineering and Applications,2014 (5):165-168. [6]EMMY PREMA C,VINSLEY S S,SURESH S.Efficient flame detection based on static and dynamic texture analysis in forest fire detection[J].Fire technology,2018,54:255-288. [7]YAN Y Y,CHEN C X,LIU Y A,et al.Flame Detection of Dynamic Texture Features in Dimension-Weighted Mode[J].Chinese Journal of Intelligent Systems,2017,12(4):548-555. [8]HOWARD A G,ZHU M,CHEN B,et al.Mobilenets:Efficient convolutional neural networks for mobile vision applications[J].arXiv:1704.04861,2017. [9]SANDLER M,HOWARD A,ZHU M,et al.Mobilenetv2:In-verted residuals and linear bottlenecks[C]//2018 IEEE Confe-rence on Computer Vision and Pattern Recognition.IEEE,2018:4510-4520. [10]HOWARD A,SANDLER M,CHU G,et al.Searching for mobilenetv3[C]//2019 IEEE/CVF International Conference on Computer Vision.IEEE,2019:1314-1324. [11]ZHANG X,ZHOU X,LIN M,et al.Shufflenet:An extremelyefficient convolutional neural network for mobile devices[C]//2018 IEEE Conference on Computer Vision and Pattern.IEEE,2018:6848-6856. [12]CHEN J,KAO S,HE H,et al.Run,Don't Walk:Chasing Higher FLOPS for Faster Neural Networks[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2023:12021-12031. [13]HAN K,WANG Y,TIAN Q,et al.Ghostnet:More featuresfrom cheap operations[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2020:1580-1589. [14]TAN M,CHEN B,PANG R,et al.Mnasnet:Platform-awareneural architecture search for mobile[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2019:2820-2828. [15]CHEN Y,KALANTIDIS Y,LI J,et al.A^2-nets:Double attention networks[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.2018:350-359. [16]ZHAO H,JIA J,KOLTUN V.Exploring self-attention for image recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:10076-10085. [17]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2018:7132-7141. [18]WANG Q,WU B,ZHU P,et al.ECA-Net:Efficient channel attention for deep convolutional neural networks[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:11534-11542. [19]YANG L,ZHANG R Y,LI L,et al.Simam:A simple,parameter-free attention module for convolutional neural networks[C]//2021 International Conference on Machine Learning.PMLR,2021:11863-11874. [20]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//2018 European Conference on Computer Vision.Springer,2018:3-19. [21]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramidnetworks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2017:2117-2125. [22]LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//2018 IEEE Conference on Computer Vision and Pattern Recognition.IEEE,2018:8759-8768. [23]TAN M,PANG R,LE Q V.Efficientdet:Scalable and efficient object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2020:10781-10790. [24]GHIASI G,LIN T Y,LE Q V.Nas-fpn:Learning scalable feature pyramid architecture for object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:7036-7045. [25]LIU S,HUANG D,WANG Y.Learning spatial fusion for single-shot object detection[J].arXiv:1911.09516,2019. [26]HARIHARAN B,MALIK J,RAMANAN D.Discriminativedecorrelation for clustering and classification[C]//European Conference on Computer Vision.Berlin:Springer,2012:459-472. [27]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [28]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [29]LI C,LI L,JIANG H,et al.YOLOv6:A single-stage object detection framework for industrial applications[J].arXiv:2209.02976,2022. [30]MA N,ZHANG X,ZHENG H T,et al.Shufflenet v2:Practical guidelines for efficient cnn architecture design[C]//2018 European Conference on Computer Vision.Munich:Springer,2018:116-131. [31]DAQUAN Z,HOU Q,CHEN Y,et al.Rethinking Bottleneck Structure for Efficient Mobile Network Design[J].arXiv:2007.02269,2020. [32]HE Y,SAHMA A,HE X,et al.FireNet:A Lightweight and Ef-ficient Multi-Scenario Fire Object Detector[J].Remote Sensing,2024,16(21):4112. [33]SHEN P,SUN N,HU K,et al.FireViT:An Adaptive Lightweight Backbone Network for Fire Detection[J].Forests,2023,14(11):2158. [34]LIANG Y,CHEN T,ZHANG W.Multi-Scale Fire DetectionAlgorithm with Adaptive Attention[J].Transactions of Beijing institute of Technology,2024,44(1):91-101. |
[1] | GAO Wei, WANG Lei, LI Jianan, LI Shuailong, HAN Lin. Operator Fusion Optimization for Deep Learning Compiler TVM [J]. Computer Science, 2025, 52(5): 58-66. |
[2] | MIAO Zhuang, CUI Haoran, ZHANG Qiyang, WANG Jiabao, LI Yang. Restoration of Atmospheric Turbulence-degraded Images Based on Contrastive Learning [J]. Computer Science, 2025, 52(5): 171-178. |
[3] | ZHENG Xu, HUANG Xiangjie, YANG Yang. Reversible Facial Privacy Protection Method Based on “Invisible Masks” [J]. Computer Science, 2025, 52(5): 384-391. |
[4] | DENG Ceyu, LI Duantengchuan, HU Yiren, WANG Xiaoguang, LI Zhifei. Joint Inter-word and Inter-sentence Multi-relationship Modeling for Review-basedRecommendation Algorithm [J]. Computer Science, 2025, 52(4): 119-128. |
[5] | PENG Linna, ZHANG Hongyun, MIAO Duoqian. Complex Organ Segmentation Based on Edge Constraints and Enhanced Swin Unetr [J]. Computer Science, 2025, 52(4): 177-184. |
[6] | KONG Jialin, ZHANG Qi, WEI Jianze, LI Qi. Adaptive Contextual Learning Method Based on Iris Texture Perception [J]. Computer Science, 2025, 52(4): 185-193. |
[7] | ZHOU Yi, MAO Kuanmin. Research on Individual Identification of Cattle Based on YOLO-Unet Combined Network [J]. Computer Science, 2025, 52(4): 194-201. |
[8] | SUN Tanghui, ZHAO Gang, GUO Meiqian. Long-tail Distributed Medical Image Classification Based on Large Selective Nuclear Bilateral-branch Networks [J]. Computer Science, 2025, 52(4): 231-239. |
[9] | MENG Sijiang, WANG Hongxia, ZENG Qiang, ZHOU Yang. Multi-view and Multi-scale Fusion Attention Network for Document Image Forgery Localization [J]. Computer Science, 2025, 52(4): 327-335. |
[10] | WANG Tao, BAI Xuefei, WANG Wenjian. Selective Feature Fusion for 3D CT Image Segmentation of Renal Cancer Based on Edge Enhancement [J]. Computer Science, 2025, 52(3): 41-49. |
[11] | WANG Jie, WANG Chuangye, XIE Jiucheng, GAO Hao. Animatable Head Avatar Reconstruction Algorithm Based on Region Encoding [J]. Computer Science, 2025, 52(3): 50-57. |
[12] | ZHONG Yue, GU Jieming. 3D Reconstruction of Single-view Sketches Based on Attention Mechanism and Contrastive Loss [J]. Computer Science, 2025, 52(3): 77-85. |
[13] | LI Zongmin, RONG Guangcai, BAI Yun, XU Chang , XIAN Shiyang. 3D Object Detection with Dynamic Weight Graph Convolution [J]. Computer Science, 2025, 52(3): 104-111. |
[14] | WANG Yuan, HUO Peng, HAN Yi, CHEN Tun, WANG Xiang, WEN Hui. Survey on Deep Learning-based Meteorological Forecasting Models [J]. Computer Science, 2025, 52(3): 112-126. |
[15] | SHEN Yaxin, GAO Lijian , MAO Qirong. Semi-supervised Sound Event Detection Based on Meta Learning [J]. Computer Science, 2025, 52(3): 222-230. |
|