Computer Science ›› 2025, Vol. 52 ›› Issue (7): 210-217.doi: 10.11896/jsjkx.240600127
• Artificial Intelligence • Previous Articles Next Articles
JIANG Kun1, ZHAO Zhengpeng1, PU Yuanyuan1,2, HUANG Jian1, GU Jinjing1, XU Dan1
CLC Number:
[1]BUSSO C,BULUT M,LEE C C,et al.IEMOCAP:Interactive emotional dyadic motion capture database[J].Language Resources and Evaluation,2008,42:335-359. [2]LIU J M,ZHANG P X,LIU Y,et al.Summary of multi-modal sentiment analysis technology[J].Journal of Frontiers of Computer Science & Technology,2021,15(7):1165. [3]SNOEK C G M,WORRING M,SMEULDERS A W M.Early versus late fusion in semantic video analysis[C]//Proceedings of the 13th Annual ACM International Conference on Multimedia.2005:399-402. [4]TSAI Y H H,LIANG P P,ZADEH A,et al.Learning factorized multimodal representations[J].arXiv:1806.06176,2018. [5]HAZARIKA D,ZIMMERMANN R,PORIA S.Misa:Modality-invariant and-specific representations for multimodal sentiment analysis[C]//Proceedings of the 28th ACM International Conference on Multimedia.2020:1122-1131. [6]WU J,MAI S,HU H.Graph capsule aggregation for unaligned multimodal sequences[C]//Proceedings of the 2021 International Conference on Multimodal Interaction.2021:521-529. [7]HUANG J,PU Y,ZHOU D,et al.Dynamic hypergraph convo-lutional network for multimodal sentiment analysis[J].Neurocomputing,2024,565:126992. [8]SOLEYMANI M,GARCIA D,JOU B,et al.A survey of multi-modal sentiment analysis[J].Image and Vision Computing,2017,65:3-14. [9]D'MELLO S K,KORY J.A review and meta-analysis of multimodal affect detection systems[J].ACM computing surveys(CSUR),2015,47(3):1-36. [10]GKOUMAS D,LI Q,LIOMA C,et al.What makes the difference? An empirical comparison of fusion strategies for multimodal language analysis[J].Information Fusion,2021,66:184-197. [11]RAHMAN W,HASAN M K,LEE S,et al.Integrating multimodal information in large pretrained transformers[C]//Proceedings of the conference.Association for Computational Linguistics.Meeting.NIH Public Access,2020. [12]HAN W,CHEN H,GELBUKH A,et al.Bi-bimodal modality fusion for correlation-controlled multimodal sentiment analysis[C]//Proceedings of the 2021 International Conference on Multimodal Interaction.2021:6-15. [13]YU W,XU H,YUAN Z,et al.Learning modality-specific repre-sentations with self-supervised multi-task learning for multimodal sentiment analysis[C]//Proceedings of the AAAI Confe-rence on Artificial Intelligence.2021:10790-10797. [14]YANG J,WANG Y,YI R,et al.MTAG:Modal-temporal attention graph for unaligned human multimodal language sequences[J].arXiv:2010.11985,2020. [15]GAO Y,ZHANG Z,LIN H,et al.Hypergraph learning:Methods and practices[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,44(5):2548-2566. [16]ZHOU D,HUANG J,SCHÖLKOPF B.Learning with hypergraphs:Clustering,classification,and embedding[C]//Procee-dings of the 20th Annual Conference on Neural Information Processing Systems.2006. [17]BAI S,ZHANG F,TORR P H S.Hypergraph convolution and hypergraph attention[J].Pattern Recognition,2021,110:107637. [18]ZHANG R,ZOU Y,MA J.Hyper-SAGNN:a self-attentionbased graph neural network for hypergraphs[J].arXiv:1911.02613,2019. [19]FENG Y,YOU H,ZHANG Z,et al.Hypergraph neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:3558-3565. [20]YADATI N,NIMISHAKAVI M,YADAV P,et al.HyperGCN:A new method fo of training graph convolutional networks on hypergraphs[C]//Proceedings of the 33rd International Confe-rence onNeural Information Processing Systems,2019,32. [21]HUANG J,YANG J.Unignn:a unified framework for graphand hypergraph neural networks[J].arXiv:2105.00956,2021. [22]CHIEN E,PAN C,PENG J,et al.You are allset:A multisetfunction framework for hypergraph neural networks[J].arXiv:2106.13264,2021. [23]ZHANG Z,LIN H,ZHAO X,et al.Inductive multi-hypergraph learning and its application on view-based 3D object classification[J].IEEE Transactions on Image Processing,2018,27(12):5957-5968. [24]WANG M,LIU X,WU X.Visual classification by l_1 $-hypergraph modeling[J].IEEE Transactions on Knowledge and Data Engineering,2015,27(9):2564-2574. [25]GAO Y,WANG M,ZHA Z J,et al.Visual-textual joint rele-vance learning for tag-based social image search[J].IEEE Transactions on Image Processing,2012,22(1):363-376. [26]HE J,HU H.MF-BERT:Multimodal fusion in pre-trainedBERT for sentiment analysis[J].IEEE Signal Processing Letters,2021,29:454-458. [27]SHI H,PU Y,ZHAO Z,et al.Co-space Representation Interaction Network for multimodal sentiment analysis[J].Knowledge-Based Systems,2024,283:111149. [28]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [29]DEGOTTEX G,KANE J,DRUGMAN T,et al.COVAREP-A collaborative voice analysis repository for speech technologies[C]//2014 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).IEEE,2014:960-964. [30]BALTRUAITIS T,ROBINSON P,MORENCY L P.Open-face:an open source facial behavior analysis toolkit[C]//2016 IEEE Winter Conference on Applications of Computer Vision(WACV).IEEE,2016:1-10. [31]CHUNG J,GULCEHRE C,CHO K H,et al.Empirical evaluation of gated recurrent neural networks on sequence modeling[J].arXiv:1412.3555,2014. [32]KRISHNA K,MURTY M N.Genetic K-means algorithm[J].IEEE Transactions on Systems,Man,and Cybernetics,Part B(Cybernetics),1999,29(3):433-439. [33]MADDISON C J,MNIH A,TEH Y W.The concrete distribution:A continuous relaxation of discrete random variables[J].arXiv:1611.00712,2016. [34]ZADEH A,ZELLERS R,PINCUS E,et al.Mosi:multimodal corpus of sentiment intensity and subjectivity analysis in online opinion videos[J].arXiv:1606.06259,2016. [35]ZADEH A A B,LIANG P P,PORIA S,et al.Multimodal language analysis in the wild:Cmu-mosei dataset and interpretable dynamic fusion graph[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).2018:2236-2246. [36]ZADEH A,LIANG P P,PORIA S,et al.Multi-attention recurrent network for human communication comprehension[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018. [37]TSAI Y H H,BAI S,LIANG P P,et al.Multimodal transformer for unaligned multimodal language sequences[J].arXiv:1906.00295,2019. [38]CHEN M,LI X.Swafn:Sentimental words aware fusion net-work for multimodal sentiment analysis[C]//Proceedings of the 28th International Conference on Computational Linguistics.2020:1067-1077. [39]WU J,MAI S,HU H.Graph capsule aggregation for unaligned multimodal sequences[C]//Proceedings of the 2021 Interna-tional Conference on Multimodal Interaction.2021:521-529. [40]MAI S,XING S,HE J,et al.Multimodal graph for unalignedmultimodal sequence analysis via graph convolution and graph pooling[J].ACM Transactions on Multimedia Computing,Communications and Applications,2023,19(2):1-24. [41]LI Y,WANG Y,CUI Z.Decoupled multimodal distilling foremotion recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:6631-6640. [42]PHAM H,LIANG P P,MANZINI T,et al.Found in translation:Learning robust joint representations by cyclic translations between modalities[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:6892-6899. |
[1] | WANG Youkang, CHENG Chunling. Multimodal Sentiment Analysis Model Based on Cross-modal Unidirectional Weighting [J]. Computer Science, 2025, 52(7): 226-232. |
[2] | CHEN Zhen, PU Yuanyuan, ZHAO Zhengpeng, XU Dan, QIAN Wenhua. Multimodal Sentiment Analysis Based on Adaptive Gated Information Fusion [J]. Computer Science, 2023, 50(3): 298-306. |
[3] | LIN Yun, HUANG Zhen-hang, GAO Fan. Diffusion Variable Tap-length Maximum Correntropy Criterion Algorithm [J]. Computer Science, 2021, 48(5): 263-269. |
|