Computer Science ›› 2025, Vol. 52 ›› Issue (7): 226-232.doi: 10.11896/jsjkx.240600066
• Artificial Intelligence • Previous Articles Next Articles
WANG Youkang, CHENG Chunling
CLC Number:
[1]ANKITA G,KINJAL A,SOUJANYA P,et al.Multimodal sentiment analysis:A systematic review of history,datasets,multimodal fusion methods applications,challenges and future directions[J].Information Fusion,2023,91:424-444. [2]HAN W,CHEN H,PORIA S.Improving multimodal fusionwith hierarchical mutual information maximization for multimodal sentiment analysis[C]//Proceedings of EMNLP.ACL,2021:9180-9192. [3]PORIA S,CAMBRIA E,BAJPAI R,et al.A review of affective computing:From unimodal analysis to multimodal fusion[J].Information Fusion,2017,37:98-125. [4]FU Z,LIU F,XU Q,et al.NHFNET:a non-homogeneousfusion network for multimodal sentiment analysis[C]//2022 IEEE International Conference on Multimedia and Expo(ICME).IEEE,2022:1-6. [5]LINAN Z,ZHEHAO Z,CHENWEI Z,et al.Multimodal sentiment analysis based on fusion methods:A survey[J].Information Fusion,2023,95:306-325. [6]GKOUMAS D,LI Q,LIOMA C,et al.What makes the difference? An empirical comparison of fusion strategies for multimodal language analysis[J].Information Fusion,2021,66:184-197. [7]LIANG P P,LIU Z,ZADEH A,et al.Multimodal language analysis with recurrent multistage fusion[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.ACL,2018:150-161. [8]ZADEH A,CHEN M,PORIA S,et al.Tensor fusion network for multimodal sentiment analysis[C]//Conference on Empirical Methods in Natural Language Processing.ACL,2017:1103-1114. [9]LIU Z,SHEN Y,LAKSHMINARASIMHAN V B,et al.Efficient low-rank multimodal fusion with modality-specific factors[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.ACL,2018:2247-2256. [10]ZADEH A,LIANG P P,MAZUMDER N,et al.Memory fusion network for multi-view sequential learning[C]//Proceedings of the Thirty-Second 48AAAI Conference on Artificial Intelligence.AAAI,2018:5634-5641. [11]YU W,XU H,YUAN Z,et al.Learning modality-specific representations with self-supervised multi-task learning for multimodal sentiment analysis[C]//Proceedings of the AAAI Confe-rence on Artificial Intelligence.AAAI,2021:10790-10797. [12]YANG J,YU Y,NIU D,et al.Confede:Contrastive feature decomposition for multimodal sentiment analysis[C]//Proceedings of the 61st Annual Meeting of the Association for Computa-tional Linguistics.ACL,2023:7617-7630. [13]HUANG J,PU Y,ZHOU D,et al.Dynamic hypergraph convolutional network for multimodal sentiment analysis[J].Neurocomputing,2024,565:126992. [14]RAHMAN W,HASAN M K,LEE S,et al.Integrating multimodal information in large pretrained transformers[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.ACL,2020:2359-2369. [15]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.ACL,2019:4171-4186. [16]TSAI Y H H,BAI S,LIANG P P,et al.Multimodal transformer for unaligned multimodal language sequences[C]//Proceedings of the 57th Annual Meeting of the Association for Computa-tional Linguistics.ACL,2019:6558-6569. [17]ZADEH A,LIANG P P,PORIA S,et al.Multi-attention recurrent network for human communication comprehension[C]//Proceedings of the AAAI Conference on Artificial Intelligence.AAAI,2018:5642-5649. [18]WANG Y,SHEN Y,LIU Z,et al.Words can shift:Dynamically adjusting word representations using nonverbal behaviors[C]//Proceedings of the AAAI Conference on Artificial Intelligence.AAAI,2019:7216-7223. [19]GHOSAL D,AKHTAR M S,CHAUHAN D,et al.Contextual inter-modal attention for multi-modal sentiment analysis[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.ACL,2018:3454-3466. [20]CHENG H,YANG Z,ZHANG X,et al.Multimodal Sentiment Analysis Based on Attentional Temporal Convolutional Network and Multi-layer Feature Fusion[J].IEEE Transactions on Affective Computing,2023,14(4):3149-3163. [21]FU Y,ZHANG Z,YANG R,et al.Hybrid cross-modal interaction learning for multimodal sentiment analysis[J].Neurocomputing,2024,571:127201. [22]SUN L,LIAN Z,LIU B,et al.Efficient multimodal transformer with dual-level feature restoration for robust multimodal sentiment analysis[J].IEEE Transactions on Affective Computing,2023,15(1):309-325. [23]ZADEH A,ZELLERS R,PINCUS E,et al.Multimodal sentiment intensity analysis in videos:Facial gestures and verbal messages[J].IEEE Intelligent Systems,2016,31(6):82-88. [24]ZADEH A A B,LIANG P P,PORIA S,et al.Multimodal language analysis in the wild:Cmu-mosei dataset and interpretable dynamic fusion graph[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.ACL,2018:2236-2246. |
[1] | LIU Chengzhuang, ZHAI Sulan, LIU Haiqing, WANG Kunpeng. Weakly-aligned RGBT Salient Object Detection Based on Multi-modal Feature Alignment [J]. Computer Science, 2025, 52(7): 142-150. |
[2] | ZHUANG Jianjun, WAN Li. SCF U2-Net:Lightweight U2-Net Improved Method for Breast Ultrasound Lesion SegmentationCombined with Fuzzy Logic [J]. Computer Science, 2025, 52(7): 161-169. |
[3] | JIANG Kun, ZHAO Zhengpeng, PU Yuanyuan, HUANG Jian, GU Jinjing, XU Dan. Cross-modal Hypergraph Optimisation Learning for Multimodal Sentiment Analysis [J]. Computer Science, 2025, 52(7): 210-217. |
[4] | ZHENG Cheng, YANG Nan. Aspect-based Sentiment Analysis Based on Syntax,Semantics and Affective Knowledge [J]. Computer Science, 2025, 52(7): 218-225. |
[5] | KONG Yinling, WANG Zhongqing, WANG Hongling. Study on Opinion Summarization Incorporating Evaluation Object Information [J]. Computer Science, 2025, 52(7): 233-240. |
[6] | LIU Yajun, JI Qingge. Pedestrian Trajectory Prediction Based on Motion Patterns and Time-Frequency Domain Fusion [J]. Computer Science, 2025, 52(7): 92-102. |
[7] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
[8] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
[9] | CHEN Xianglong, LI Haijun. LST-ARBunet:An Improved Deep Learning Algorithm for Nodule Segmentation in Lung CT Images [J]. Computer Science, 2025, 52(6A): 240600020-10. |
[10] | ZHENG Chuangrui, DENG Xiuqin, CHEN Lei. Traffic Prediction Model Based on Decoupled Adaptive Dynamic Graph Convolution [J]. Computer Science, 2025, 52(6A): 240400149-8. |
[11] | HONG Yi, SHEN Shikai, SHE Yumei, YANG Bin, DAI Fei, WANG Jianxiao, ZHANG Liyi. Multivariate Time Series Prediction Based on Dynamic Graph Learning and Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240700047-8. |
[12] | TENG Minjun, SUN Tengzhong, LI Yanchen, CHEN Yuan, SONG Mofei. Internet Application User Profiling Analysis Based on Selection State Space Graph Neural Network [J]. Computer Science, 2025, 52(6A): 240900060-8. |
[13] | ZHAO Chanchan, YANG Xingchen, SHI Bao, LYU Fei, LIU Libin. Optimization Strategy of Task Offloading Based on Meta Reinforcement Learning [J]. Computer Science, 2025, 52(6A): 240800050-8. |
[14] | LI Daicheng, LI Han, LIU Zheyu, GONG Shiheng. MacBERT Based Chinese Named Entity Recognition Fusion with Dependent Syntactic Information and Multi-view Lexical Information [J]. Computer Science, 2025, 52(6A): 240600121-8. |
[15] | HUANG Bocheng, WANG Xiaolong, AN Guocheng, ZHANG Tao. Transmission Line Fault Identification Method Based on Transfer Learning and Improved YOLOv8s [J]. Computer Science, 2025, 52(6A): 240800044-8. |
|