Computer Science ›› 2025, Vol. 52 ›› Issue (6A): 240700010-8.doi: 10.11896/jsjkx.240700010
• Intelligent Medical Engineering • Previous Articles Next Articles
GUAN Xin1, YANG Xueyong1, YANG Xiaolin2, MENG Xiangfu1
CLC Number:
[1]PANG S,ZHANG Y,DING M,et al.A Deep Model for Lung Cancer Type Identification by Densely Connected Convolutional Networks and Adaptive Boosting[J].IEEE Access,2020,8:4799-4805. [2]SIEGEL R L,KRATZER T B,GIAQUINTO A N,et al.Cancer statistics,2025[J].Ca,2025,75(1):10. [3]RAMALINGAM S,BELANI C P.State-of-the-art chemotherapy for advanced non-small cell lung cancer[J].Seminars in Oncology,2004,31:68-74. [4]ZHOU C C,WANG J,WANG B C,et al.Chinese Experts Consensus on Immune Checkpoint Inhibitors for Non-small Cell Lung Cancer(2020 Version)[J].Chinese Journal of Lung Cancer,2021,24(4):217-235. [5]SETORDZI P,CHANG X,LIU Z,et al.The recent advances of PD-1 and PD-L1 checkpoint signaling inhibition for breast cancer immunotherapy[J].European Journal of Pharmacology,2021,895:173867. [6]CHALMERS Z R,CONNELLY C F,FABRIZIOD,et al.Analysis of 100 000 human cancer genomes reveals the landscape of tumor mutational burden[J].Genome Medicine,2017,9(1):34. [7]YARCHOAN M,HOPKINS A,JAFFEE E M.Tumor Muta-tional Burden and Response Rate to PD-1 Inhibition[J].New England Journal of Medicine,2017,377(25):2500-2501. [8]COUDRAY N,OCAMPO P S,SAKELLAROPOULOS T,et al.Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning[J].Nature Medicine,2018,24(10):1559-1567. [9]YU W,LUO M,ZHOU P,et al.Metaformer is act-ually what you need for vision[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:10819-10829. [10]KRIZHEVSKY A,SUTSKEVER I,HINTONG E.ImageNetclassification with deep convolutional neural networks[J].Communications of the ACM,2017,60(6):84-90. [11]LIN M,CHEN Q,YAN S.Network in network[J].arXiv:1312.4400,2013. [12]HUANG G,LIU Z,VAN DER MAATENL,et al.Deep Convolutional Networks for Large-Scale Image Recognition[C]//ICLR.2017. [13]SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Boston,MA,USA:IEEE,2015:1-9. [14]HE K,ZHANG X,REN S,et al.Deep residual le-arning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [15]XIE S,GIRSHICK R,DOLLAR P,et al.Aggregated ResidualTransformations for Deep Neural Networks[C]//IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu,HI:IEEE,2017:5987-5995. [16]HUANG G,LIU Z,VAN DER MAATEN L,et al.DenselyConnected Convolutional Networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu,HI:IEEE,2017:2261-2269. [17]JANG H J,SONG I H,LEES H.Deep Learning for Automatic Subclassification of Gastric Carcinoma Using Whole-Slide Histopathology Images[J].Cancers,2021,13(15):3811. [18]ZHOU P,CAO Y,LI M,et al.HCCANet:histopathological image grading of colorectal cancer using CNN based on multichannel fusion attention mechanism[J].Scientific Reports,2022,12(1):15103. [19]WANG D,KHOSLA A,GARGEYA R,et al.Deep learning for identifying metastatic breast cancer[J].arXiv:1606.05718,2016. [20]LAM L H T,CHU N T,TRANT O,et al.A Radiomics-Based Machine Learning Model for Prediction of Tumor Mutational Burden in Lower-Grade Gliomas[J].Cancers,2022,14(14):3492. [21]VEERARAGHAVAN H,FRIEDMAN C F,DELAIR D F,et al.Machine learning-based prediction of microsatellite instability and high tumor mutation burden from contrastenhanced computed tomography in endometrial cancers[J].Scientific Reports,2020,10(1):17769. [22]SALDANHA O L,LOEFFLER C M L,NIEHUES J M,et al.Self-supervised attention-based deep learning for pancancer mutation prediction from histopathology[J].NPJ Precision Oncology,2023,7(1):35. [23]SHAMAI G,LIVNE A,POLÓNIA A,et al.Deep learning-based image analysis predicts PD-L1 status from H&E-stained histopathology images in breast cancer[J].Nature Communications,2022,13(1):6753. [24]SADHWANI A,CHANG H W,BEHROOZ A,et al.Comparative analysis of machine learning approaches to classify tumor mutation burden in lung adenocarcinoma using histopathology images[J].Scientific Reports,2021,11(1):16605. [25]CHEN Y,LIU J,JIANG P,et al.Predicting Tumor MutationBurden of TNBC Based on Nuclei Scores of Histopathological Images[C]//IEEE International Conference on Bioinformatics and Biomedicine(BIBM).Las Vegas,NV,USA:IEEE,2022:936-941. [26]JAIN M S,MASSOUD T F.Predicting tumour mutational burden from histopathological images using multiscale deep learning[J].Nature Machine Intelligence,2020,2(6):356-362. [27]CHEN S,XIANG J,WANGX,et al.Pan-cancer computational histopathology reveals tumor mutational burden status through weakly-supervised deep learning[J].arXiv:2204.03257,2022. [28]HUANG K,LIN B,LIU J,et al.Predicting colorectal cancertumor mutational burden from histopathological images and clinical information using multi-modal deep learning[J].Bioinformatics,2022,38(22):5108-5115. |
[1] | LI Daicheng, LI Han, LIU Zheyu, GONG Shiheng. MacBERT Based Chinese Named Entity Recognition Fusion with Dependent Syntactic Information and Multi-view Lexical Information [J]. Computer Science, 2025, 52(6A): 240600121-8. |
[2] | HOU Zhexiao, LI Bicheng, CAI Bingyan, XU Yifei. High Quality Image Generation Method Based on Improved Diffusion Model [J]. Computer Science, 2025, 52(6A): 240500094-9. |
[3] | HAN Lin, WANG Yifan, LI Jianan, GAO Wei. Automatic Scheduling Search Optimization Method Based on TVM [J]. Computer Science, 2025, 52(3): 268-276. |
[4] | LI Jiaying, LIANG Yudong, LI Shaoji, ZHANG Kunpeng, ZHANG Chao. Study on Algorithm of Depth Image Super-resolution Guided by High-frequency Information ofColor Images [J]. Computer Science, 2024, 51(7): 197-205. |
[5] | QUE Yue, GAN Menghan, LIU Zhiwei. Object Detection with Receptive Field Expansion and Multi-branch Aggregation [J]. Computer Science, 2024, 51(6A): 230600151-6. |
[6] | LIU Xiaohu, CHEN Defu, LI Jun, ZHOU Xuwen, HU Shan, ZHOU Hao. Speaker Verification Network Based on Multi-scale Convolutional Encoder [J]. Computer Science, 2024, 51(6A): 230700083-6. |
[7] | ZHANG Lanxin, XIANG Ling, LI Xianze, CHEN Jinpeng. Intelligent Fault Diagnosis Method for Rolling Bearing Based on SAMNV3 [J]. Computer Science, 2024, 51(6A): 230700167-6. |
[8] | ZHANG Feng, HUANG Shixin, HUA Qiang, DONG Chunru. Novel Image Classification Model Based on Depth-wise Convolution Neural Network andVisual Transformer [J]. Computer Science, 2024, 51(2): 196-204. |
[9] | REN Yuheng, ZHAO Yunfeng, WU Chuang. Deep Gait Recognition Network Based on Relative Position Encoding Transformer [J]. Computer Science, 2024, 51(11A): 240400064-6. |
[10] | XU Junwen, CHEN Zonglei, LI Tianrui, LI Chongshou. Time Series Prediction of Hybrid Neural Networks Based on Seasonal Decomposition [J]. Computer Science, 2024, 51(11A): 231200008-7. |
[11] | ZHOU Xueyang, FU Qiming, CHEN Jianping, LU You, WANG Yunzhe. Chemical-induced Disease Relation Extraction:Graph Reasoning Method Based on Evidence Focusing [J]. Computer Science, 2024, 51(10): 351-361. |
[12] | TENG Sihang, WANG Lie, LI Ya. Non-autoregressive Transformer Chinese Speech Recognition Incorporating Pronunciation- Character Representation Conversion [J]. Computer Science, 2023, 50(8): 111-117. |
[13] | YAN Mingqiang, YU Pengfei, LI Haiyan, LI Hongsong. Arbitrary Image Style Transfer with Consistent Semantic Style [J]. Computer Science, 2023, 50(7): 129-136. |
[14] | LI Fan, JIA Dongli, YAO Yumin, TU Jun. Graph Neural Network Few Shot Image Classification Network Based on Residual and Self-attention Mechanism [J]. Computer Science, 2023, 50(6A): 220500104-5. |
[15] | DOU Zhi, HU Chenguang, LIANG Jingyi, ZHENG Liming, LIU Guoqi. Lightweight Target Detection Algorithm Based on Improved Yolov4-tiny [J]. Computer Science, 2023, 50(6A): 220700006-7. |
|