Computer Science ›› 2025, Vol. 52 ›› Issue (8): 403-410.doi: 10.11896/jsjkx.240700058
• Information Security • Previous Articles Next Articles
CHEN Jun, ZHOU Qiang, BAO Lei, TAO Qing
CLC Number:
[1]KIM M,JAIN A K,LIU X.AdaFace:Quality Adaptive Margin for Face Recognition[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:18729-18738. [2]FENG S,SUN H W,YAN X T,et al.Dense reinforcementlearning for safety validation of autonomous vehicles[J].Nature,2023,615(7953):620-627. [3]WANG Y,YU J,ZHANG J.Zero-Shot Image Restoration Using Denoising Diffusion Null-Space Model[J].arXiv:2212.00490,2022. [4]HESSEL J,MARASOVIĆ A,HWANG J D,et al.Do Androids Laugh at Electric Sheep? Humor “Understanding” Benchmarks from The New Yorker Caption Contest[J].arXiv:2209.06293,2022. [5]GU J,JIA X,JORGE P D,et al.A Survey on Transferability of Adversarial Examples across Deep Neural Networks[J].arXiv:2310.17626,2023. [6]WANG X,HE K.Enhancing the Transferability of Adversarial Attacks through Variance Tuning[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:1924-1933. [7]JI S L,DU T Y,DENG S G,et al.Robustness certification research on deep learning models:a survey[J].Chinese Journal of Computers,2022,45(1):190-206. [8]GOODFELLOW I J ,SHLENS J,SZEGEDY C.Explaining and Harnessing Adversarial Examples[J].arXiv:1412.6572,2014. [9]KURAKIN A,GOODFELLOW I J,BENGIO S.Adversarial examples in the physical world[J].arXiv:1607.02533,2016. [10]CARLIN IN,WAGNER D A.Towards Evaluating the Robustness of Neural Networks[C]//2017 IEEE Symposium on Secu-rity and Privacy.2017:39-57. [11]MADRY A,MAKELOV A,SCHMIDT L,et al.Towards Deep Learning Models Resistant to Adversarial Attacks[J].arXiv:1706.06083,2019. [12]TRAMÉR F, KURAKIN A, PAPERNOT N,et al.Ensemble Adversarial Training:Attacks and Defenses[J].arXiv:1705.07204,2017. [13]DONG Y,LIAO F,PANG T,et al.Boosting Adversarial Attacks with Momentum[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:9185-9193. [14]LIN J,SONG C,HE K,et al.Nesterov Accelerated Gradient and Scale Invariance for Adversarial Attacks[J].arXiv:1908.06281,2019. [15]XIE C,ZHANG Z,WANG J,et al.Improving Transferability of Adversarial Examples With Input Diversity[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:2725-2734. [16]DONG Y,PANG T,SU H,et al.Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:4307-4316. [17]WANG J,CHEN Z,JIANG K,et al.Boosting the Transferability of Adversarial Attacks with Global Momentum Initialization[J].arXiv:2211.11236,2022. [18]WANG X,LIN J,HU H,et al.Boosting Adversarial Transferability through Enhanced Momentum[J].arXiv:2103.10609,2021. [19]PENG A,LIN Z,ZENG H,et al.Boosting Transfera-bility of Adversarial Example via an Enhanced Euler's Method[C]//ICASSP 2023-2023 IEEE International Conference on Acoustics,Speech and Signal Processing.2023. [20]GE Z,SHANG F,LIU H,et al.Boosting Adversarial Transferability by Achieving Flat Local Maxima[J].arXiv:2306.05225,2023. [21]FANG Z,WANG R,HUANG T,et al.Strong Transferable Adversarial Attacks via Ensembled Asymptotically Normal Distribution Learning[C]//CVPR2024.2024. [22]KARIMIREDDY S P,REBJOCK Q,STICH S U,et al.Error Feedback Fixes SignSGD and other Gradient Compression Schemes[J].arXiv:1901.09847,2019. [23]TAO W,PAN Z S,ZHU X H,et al.The Optimal individual convergence rate for the projected subgradient method with linear interpolation operation [J].Journal of Computer Research and Development,2017,54(3):529-536. [24]MUKKAMALA M C,HEIN M.Variants of RMSProp andAdagrad with Logarithmic Regret Bounds[J].arXiv:1706.05507,2017. [25]KINGMA D P,BA J.Adam:A Method for Stochastic Optimization[J].arXiv:1412.6980,2017. [26]SITAWARIN C.New perspectives on adversarially robust machine learning systems:UCB-EECS-2024-10[R].2024. [27]RUSSAKOVSKY O,DENG J,SU H,et al.ImageNet LargeScale Visual Recognition Challenge[J].International Journal of Computer Vision,2015,115:211-252. [28]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [29]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the Inception Architecture for Computer Vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826. [30]SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-Scale Image Recognition[J].arXiv:1409.1556,2014. [31]HUANG G,LIU Z,WEINBERGER K Q.Densely ConnectedConvolutional Networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition.2017:2261-2269. [32]SANDLER M,HOWARD A G,ZHU M,et al.MobileNetV2:Inverted Residuals and Linear Bottlenecks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2018:4510-4520. [33]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.AnImage is Worth 16×16 Words:Transformers for Image Recognition at Scale[J].arXiv:2010.11929,2020. [34]LIU Z,LIN Y,CAO Y,et al.Swin Transformer:Hierarchical Vision Transformer using Shifted Windows[C]//2021 IEEE/CVF International Conference on Computer Vision.2021:9992-10002. [35]LIU Y,CHEN X,LIU C,et al.Delving into Transferable Adversarial Examples and Black-box Attacks[J].arXiv:1611.02770,2016. [36]BAO L,TAO W,TAO Q.Enhancing Adversarial Attack Transferability with an Adaptive Step-Size Strategy and Data Augmentation Mechanism[J].Electronics Letters,2024,52(1):157-169. |
[1] | KANG Kai, WANG Jiabao, XU Kun. Balancing Transferability and Imperceptibility for Adversarial Attacks [J]. Computer Science, 2025, 52(6): 381-389. |
[2] | TAN Zhengyuan, ZHONG Jiaqing, CHEN Juan. AI+HPC:An Overview of Supercomputing System Software and Application Technology Development Driven by “AI+” [J]. Computer Science, 2025, 52(5): 1-10. |
[3] | WANG Liming, ZHONG Guomin, SUN Mingxuan, HE Xiongxiong. Finitely-valued Terminal Zeroing Neural Networks with Application to Robotic Motion Planning [J]. Computer Science, 2025, 52(5): 270-280. |
[4] | CHEN Zigang, PAN Ding, LENG Tao, ZHU Haihua, CHEN Long, ZHOU Yousheng. Explanation Robustness Adversarial Training Method Based on Local Gradient Smoothing [J]. Computer Science, 2025, 52(2): 374-379. |
[5] | LI Xing, ZHONG Guomin. Fixed-time Recurrent Neural Networks for Time-variant Matrix Computing and Its Application in Repeatable Motion Planning [J]. Computer Science, 2024, 51(8): 324-332. |
[6] | WANG Xiaojie, LIU Jinhua, LU Shuyi, ZHOU Yuanfeng. Color Transfer Method for Unpaired Medical Images Based on Color Flow Model [J]. Computer Science, 2024, 51(8): 176-182. |
[7] | YU Mingyang, LI Ting, XU Jing. Adaptive Grey Wolf Optimizer Based on IMQ Inertia Weight Strategy [J]. Computer Science, 2024, 51(7): 354-361. |
[8] | GAO Yuzhao, NIE Yiming. Survey of Multi-agent Deep Reinforcement Learning Based on Value Function Factorization [J]. Computer Science, 2024, 51(6A): 230300170-9. |
[9] | HAN Lijun, WANG Peng, LI Ruixu, LIU Zhongyao. Dual Direction Vectors-based Large-scale Multi-objective Evolutionary Algorithm [J]. Computer Science, 2024, 51(6A): 230700155-11. |
[10] | LI Wenting, XIAO Rong, YANG Xiao. Improving Transferability of Adversarial Samples Through Laplacian Smoothing Gradient [J]. Computer Science, 2024, 51(6A): 230800025-6. |
[11] | LI Shasha, XING Hongjie. Robust Anomaly Detection Based on Adversarial Samples and AutoEncoder [J]. Computer Science, 2024, 51(5): 363-373. |
[12] | HUANG Lulu, TANG Shuyu, ZHANG Wei, DAI Xiangguang. Non-negative Matrix Factorization Parallel Optimization Algorithm Based on Lp-norm [J]. Computer Science, 2024, 51(2): 100-106. |
[13] | YOU Wenlong, DENG Li, LI Ruilong, XIE Yuxin, REN Zhengwei. Load Prediction Method of Cloud Resource Based on v-Informer [J]. Computer Science, 2024, 51(12): 147-156. |
[14] | GAO Zhuofan, GUO Wenli. Novel Probability Distribution Update Strategy for Distributed Deep Q-Networks Based on Sigmoid Function [J]. Computer Science, 2024, 51(12): 277-285. |
[15] | GUO Yuxing, YAO Kaixuan, WANG Zhiqiang, WEN Liangliang, LIANG Jiye. Black-box Graph Adversarial Attacks Based on Topology and Feature Fusion [J]. Computer Science, 2024, 51(1): 355-362. |
|