Computer Science ›› 2025, Vol. 52 ›› Issue (6): 381-389.doi: 10.11896/jsjkx.240300083
• Information Security • Previous Articles Next Articles
KANG Kai, WANG Jiabao, XU Kun
CLC Number:
[1]LI Y,LI J,JIANG J,et al.P-transformer:Towards better document-to-document neural machine translation[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2023,31:3859-3870. [2]FENG S,SUN H,YAN X,et al.Dense reinforcement learning for safety validation of autonomous vehicles[J].Nature,2023,615:620-627. [3]ZHANG Y,XIE F,SONG X,et al.Dermoscopic image retrieval based on rotation-invariance deep hashing[J].Medical Image Analysis,2022,77:102301. [4]CHEN J,CHEN K,CHEN H,et al.Contrastive learning for fine-grained ship classification in remote sensing images[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-16. [5]ZHANG Q,LI X,CHEN Y,et al.Beyond ImageNet Attack:Towards Crafting Adversarial Examples for Black-box Domains[C]//Proceedings of the International Conference on Learning Representations,2022. [6]CHEN J,CHEN H,CHEN K,et al.Diffusion Models for Imperceptible and Transferable Adversarial Attack[C]//Proceedings of the International Conference on Learning Representations.2024. [7]BRENDEL W,RAUBER J,BETHGE M.Decision-Based Ad-versarial Attacks:Reliable Attacks Against Black-Box Machine Learning Models[C]//Proceedings of the International Conference on Learning Representations,2018. [8]WU Y,LIU J.A Survey on Black-box adversarial attack in image analysis[J].Journal of Computer Science,2024(5):1138-1178. [9]WANG X,HEX,WANG J,et al.Admix:Enhancing the Transferability of Adversarial Attacks Through Variance Tuning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:16138-16147. [10]ZHU Y,CHEN Y,LI X,et al.Toward understanding and boosting adversarial transferability from a distribution perspective[J].IEEE Transactions on Image Processing,2022,31:6487-6501. [11]NASEER M M,KHAN S H,KHAN M H,et al.Cross-domainTransferability of Adversarial Perturbations[C]//Advances in Neural Information Processing Systems.2019:12885-12895. [12]SOHL-DICKSTEIN J,WEISS E,MAHESWARANATHANN,et al.Deep Unsupervised Learning using Nonequilibrium Thermodynamics[C]//Proceedings of the International Confe-rence on Machine Learning.2015:2256-2265. [13]HO J,JAIN A,ABBEEL P.Denoising Diffusion Probabilistic Models[C]//Advances in Neural Information Processing Systems.2020:6840-6851. [14]YUAN Z,ZHANG J,JIA Y,et al.Meta Gradient Adversarial Attack[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:7728-7737. [15]XIONG Y,LIN J,ZHANG M,et al.Stochastic Variance Reduced Ensemble Adversarial Attack for Boosting the Adversa-rial Transferability[C]//Proceedings of the IEEE/CVF Confe-rence on Computer Vision and Pattern Recognition.2022:14963-14972. [16]ZHU J,DAI F,YU L,et al.Attention-guided transformation-invariant attack for black-box adversarial examples[J].International Journal of Intelligent Systems,2022,37(5):3142-3165. [17]HUANG L,WEI S,GAO C,et al.Cyclical adversarial attack pierces black-box deep neural networks[J].Pattern Recognition,2022,131:108831. [18]HUAN Z,WANG Y,ZHANG X,et al.Data-free AdversarialPerturbations for Practical Black-box Attack[C]//Advances in Knowledge Discovery and Data Mining.2020:127-138. [19]DUAN M,LI K,DENG J,et al.A novel multi-sample generation method for adversarial attacks[J].ACM Transactions on Multimedia Computing,Communications,and Applications(TOMM),2022,18(4):1-21. [20]QIU H,XIAO C,YANG L,et al.Semanticadv:Generating Adversarial Examples via Attribute-Conditioned Image Editing[C]//Proceedings of the European Conference on Computer Vision.2020:19-37. [21]JIA S,YIN B,YAO T,et al.Adv-attribute:Inconspicuous and Transferable Adversarial Attack on Face Recognition[C]//Proceedings of the 36rh Conference onNeural Information Proces-sing Systems.2022. [22]YUAN S,ZHANG Q,GAO L,et al.Natural Color Fool:Towards Boosting Black-box Unrestricted Attacks[C]//NeurIPS 2022.2022. [23]SAHARIA C,HO J,CHAN W,et al.Image super-resolution via iterative refinement[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(4):4713-4726. [24]PARMAR G,SINGH K K,ZHANG R,et al.Zero-shot Image-to-image Translation[C]//Proceedings of the ACM SIGGRAPH Conference.2023:1-11. [25]NIE W,GUO B,HUANG Y,et al.Diffusion Models for Adversarial Purification[C]//Proceedings of the International Confe-rence on Machine Learning.2022:16805-16827. [26]LIU D,WANG X,PENG C,et al.Adv-Diffusion:Imperceptible Adversarial Face Identity Attack via Latent Diffusion Model[C]//Proceedings of the Conference on Artificial Intelligence.2024:3585-3593. [27]ROMBACH R,BLATTMANN A,LORENZ D,et al.High-resolution Image Synthesis with Latent Diffusion Models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:10674-10685. [28]JOHNSON J,ALAHI A,FEI-FEI L.Perceptual Losses for Real-time Style Transfer and Super-resolution[C]//Proceedings of the European Conference on Computer Vision.2016:694-711. [29]WAH C,BRANSON S,WELINDER P,et al.The caltech-ucsd birds-200-2011 dataset:Tech.Rep.CNS-TR-2011-001[R].California Institute of Technology,2011. [30]KRAUSE J,STARK M,DENG J,et al.3d Object Representations for Fine-grained Categorization[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops.2013:554-561. [31]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [32]SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-scale Image Recognition[C]//Proceedings of the International Conference on Learning Representations.2015. [33]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the Inception Architecture for Computer Vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826. [34]SANDLER M,HOWARD A,ZHU M,et al.Mobilenetv2:Inverted Residuals and Linear Bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4510-4520. [35]LIU Z,MAO H,WU C Y,et al.A Convnet for the 2020s[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:11966-11976. [36]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.AnImage is Worth 16×16 Words:Transformers for Image Recognition at Scale[C]//Proceedings of the International Conference on Learning Representations.2020. [37]LIU Z,LIN Y,CAO Y,et al.Swin Transformer:Hierarchical Vision Transformer using Shifted Windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:9992-10002. [38]TOUVRON H,CORD M,DOUZE M,et al.Training Data-efficient Image Transformers & Distillation through Attention[C]//Proceedings of the International Conference on Machine Learning.2021:10347-10357. [39]KURAKIN A,GOODFELLOW I,BENGIO S,et al.Adversarial Attacks and Defences Competition[C]//Advances in Neural Information Processing Systems.2018:195-231. [40]TRAMÉR F,KURAKIN A,PAPERNOT N,et al.EnsembleAdversarial Training:Attacks and Defenses[C]//Proceedings of the International Conference on Learning Representations.2018. [41]SONG J,MENG C,ERMON S.Denoising Diffusion Implicit Models[C]//Proceedings of the International Conference on Learning Representations.2021. [42]HEUSEL M,RAMSAUER H,UNTERTHINER T,et al.GANsTrained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium[C]//Advances in Neural Information Processing Systems.2017:6626-6637. [43]DONG Y,LIAO F,PANG T,et al.Boosting Adversarial Attacks with Momentum[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2018:9185-9193. [44]XIE C,ZHANG Z,ZHOU Y,et al.Improving Transferability of Adversarial Examples with Input Diversity[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:2730-2739. [45]DONG Y,PANG T,SU H,et al.Evading Defenses to Transfe-rable Adversarial Examples by Translation-invariant Attacks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:4312-4321. [46]GAO L,ZHANG Q,SONG J,et al.Patch-wise Attack for Fooling Deep Neural Network[C]//Proceedings of the European Conference on Computer Vision.2020:307-322. [47]LONG Y,ZHANG Q,ZENG B,et al.Frequency Domain Model Augmentation for Adversarial Attack[C]//Proceedings of the European Conference on Computer Vision.2022:549-566. [48]ZHAO Z,LIU Z,LARSON M.Towards Large Yet Imperceptible Adversarial Image Perturbations with Perceptual Color Distance[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:1036-1045. |
[1] | LI Daicheng, LI Han, LIU Zheyu, GONG Shiheng. MacBERT Based Chinese Named Entity Recognition Fusion with Dependent Syntactic Information and Multi-view Lexical Information [J]. Computer Science, 2025, 52(6A): 240600121-8. |
[2] | HUANG Bocheng, WANG Xiaolong, AN Guocheng, ZHANG Tao. Transmission Line Fault Identification Method Based on Transfer Learning and Improved YOLOv8s [J]. Computer Science, 2025, 52(6A): 240800044-8. |
[3] | WU Zhihua, CHENG Jianghua, LIU Tong, CAI Yahui, CHENG Bang, PAN Lehao. Human Target Detection Algorithm for Low-quality Laser Through-window Imaging [J]. Computer Science, 2025, 52(6A): 240600069-6. |
[4] | ZENG Fanyun, LIAN Hechun, FENG Shanshan, WANG Qingmei. Material SEM Image Retrieval Method Based on Multi-scale Features and Enhanced HybridAttention Mechanism [J]. Computer Science, 2025, 52(6A): 240800014-7. |
[5] | HOU Zhexiao, LI Bicheng, CAI Bingyan, XU Yifei. High Quality Image Generation Method Based on Improved Diffusion Model [J]. Computer Science, 2025, 52(6A): 240500094-9. |
[6] | DING Xuxing, ZHOU Xueding, QIAN Qiang, REN Yueyue, FENG Youhong. High-precision and Real-time Detection Algorithm for Photovoltaic Glass Edge Defects Based onFeature Reuse and Cheap Operation [J]. Computer Science, 2025, 52(6A): 240400146-10. |
[7] | WANG Rong , ZOU Shuping, HAO Pengfei, GUO Jiawei, SHU Peng. Sand Dust Image Enhancement Method Based on Multi-cascaded Attention Interaction [J]. Computer Science, 2025, 52(6A): 240800048-7. |
[8] | WANG Baohui, GAO Zhan, XU Lin, TAN Yingjie. Research and Implementation of Mine Gas Concentration Prediction Algorithm Based on Deep Learning [J]. Computer Science, 2025, 52(6A): 240400188-7. |
[9] | ZHENG Chuangrui, DENG Xiuqin, CHEN Lei. Traffic Prediction Model Based on Decoupled Adaptive Dynamic Graph Convolution [J]. Computer Science, 2025, 52(6A): 240400149-8. |
[10] | HONG Yi, SHEN Shikai, SHE Yumei, YANG Bin, DAI Fei, WANG Jianxiao, ZHANG Liyi. Multivariate Time Series Prediction Based on Dynamic Graph Learning and Attention Mechanism [J]. Computer Science, 2025, 52(6A): 240700047-8. |
[11] | TENG Minjun, SUN Tengzhong, LI Yanchen, CHEN Yuan, SONG Mofei. Internet Application User Profiling Analysis Based on Selection State Space Graph Neural Network [J]. Computer Science, 2025, 52(6A): 240900060-8. |
[12] | ZHAO Chanchan, YANG Xingchen, SHI Bao, LYU Fei, LIU Libin. Optimization Strategy of Task Offloading Based on Meta Reinforcement Learning [J]. Computer Science, 2025, 52(6A): 240800050-8. |
[13] | ZOU Rui, YANG Jian, ZHANG Kai. Low-resource Vietnamese Speech Synthesis Based on Phoneme Large Language Model andDiffusion Model [J]. Computer Science, 2025, 52(6A): 240700138-6. |
[14] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
[15] | TAN Jiahui, WEN Chenyan, HUANG Wei, HU Kai. CT Image Segmentation of Intracranial Hemorrhage Based on ESC-TransUNet Network [J]. Computer Science, 2025, 52(6A): 240700030-9. |
|