Computer Science ›› 2025, Vol. 52 ›› Issue (8): 288-299.doi: 10.11896/jsjkx.240700094

• Artificial Intelligence • Previous Articles     Next Articles

Multimodal Multiobjective Optimization Algorithm Based on Local Center Clustering

YUE Caitong, YE Wenhao, ZHANG Yingjie, LIANG Jing, LIN Hongyu   

  1. College of Electrical and Information Engineering,Zhengzhou University,Zhengzhou 450001,China
  • Received:2024-07-15 Revised:2024-10-14 Online:2025-08-15 Published:2025-08-08
  • About author:YUE Caitong,born in 1990,Ph.D, professor.His main research interests include multimodal multiobjective optimization,pattern recognition,neural network and particle swarm optimization.
    LIANG Jing,born in 1981,Ph.D,professor,Ph.D supervisor.Her main research interests include evolutionary computation,swarm intelligence,multi-objective optimization and neural network.
  • Supported by:
    National Natural Science Foundation of China(62106230),Key Program of Regional Innovation and Development Joint Fund of the National Natural Science Foundation of China(U23A20340),Natural Science Foundation of Henan(242300421168),National Key R&D Program of China(2022YFD2001200) and Key Laboratory of Big Data Intelligent Computing,Chongqing University of Posts and Telecommunications Open Fundation(BDIC-2023-A-007).

Abstract: In multimodal multiobjective optimization problems,multiple global and local optimal solutions can provide flexible options for decision makers.However,the current research work of multimodal multiobjective algorithms mostly focuses on multiple equivalent global Pareto optimal sets,ignoring the local Pareto optimal sets with the same value.Based on the above problems,a multimodal multiobjective optimization algorithm based on local center clustering is proposed.The algorithm locates as many optimal regions as possible through the selection strategy of the local central solution,and then designs two different search stra-tegies according to different exploration conditions of the population in the optimal region,so that the population can choose the mutation strategy adaptively according to its own conditions.Thus,each optimal region can be explored well.The proposed algorithm is tested on the CEC2020 multimodal multiobjective benchmark function.The results show that the proposed evolutionary algorithm performs well in solving problems with multiple global Pareto sets and both global and local Pareto sets.

Key words: Multimodal multiobjective optimization, Global Pareto optimal sets, Local Pareto optimal sets, Local central solution

CLC Number: 

  • TP273
[1]FONSECA C M,FLEMING P J.An overview of evolutionary algorithms in multiobjective optimization[J].Evolutionary Computation,1995,3(1):1-16.
[2]ZHANG Y,GONG D W,HAO G S,et al.Particle swarm optimization for multi-objective systems with interval parameters[J].Acta Automatica Sinica,2008,34(8):921-928.
[3]GONG W,LIAO Z,MI X,et al.Nonlinear equations solvingwith intelligent optimization algorithms:A survey[J].Complex System Modeling and Simulation,2021,1(1):15-32.
[4]LIN C,TIAN D,DUAN X,et al.3D environmental perception modeling in the simulated autonomous-driving systems[J].Complex System Modeling and Simulation,2021,1(1):45-54.
[5]DEB K.Multi-objective genetic algorithms:Problem difficulties and construction of test problems[J].Evolutionary Computation,1999,7(3):205-230.
[6]ZHANG G J,CHEN M,ZHOU X G.Two-stage differentialevolution algorithm using dynamic niche radius for multimodal optimization[J].Control and Decision,2016,31(7):1185-1191.
[7]YUE C T,LIANG J,QU B Y,et al.A survey on multimodal multiobjective optimization[J].Control and Decision,2021,36(11):2577-2588.
[8]TANABE R,ISHIBUCHI H.A review of evolutionary multimodal multiobjective optimization[J].IEEE Transactions on Evolutionary Computation,2019,24(1):193-200.
[9]LIU Y,ISHIBUCHI H,YEN G G,et al.Handling imbalance be-tween convergence and diversity in the decision space in evolutionary multimodal multiobjective optimization[J].IEEE Tran-sactions on Evolutionary Computation,2019,24(3):551-565.
[10]LI W,ZHANG T,WANG R,et al.Weighted indicator-basedevolutionary algorithm for multimodal multiobjective optimization[J].IEEE Transactions on Evolutionary Computation,2021,25(6):1064-1078.
[11]WANG W,LI G,WANG Y,et al.Clearing-based multimodal multi-objective evolutionary optimization with layer-to-layer strategy[J].Swarm and Evolutionary Computation,2022,68:100976.
[12]TIAN Y,LIU R,ZHANG X,et al.A multipopulation evolutionary algorithm for solving large-scale multimodal multiobjective optimization problems[J].IEEE Transactions on Evolutionary Computation,2020,25(3):405-418.
[13]FAN Q,YAN X.Solving multimodal multiobjective problemsthrough zoning search[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2019,51(8):4836-4847.
[14]YAO X,LI W,PAN X,et al.Multimodal multi-objective evolutionary algorithm for multiple path planning[J].Computers & Industrial Engineering,2022,169:108145.
[15]XIAO J M,ZHOU Q,QU B Y,et al.Multi-objectiveevolutionary algorithm and its application in electricpower environment economic dispatch[J].Journal of Zhengzhou University:Engineering Science,2016,37(2):1-9.
[16]YUE C,QU B,YU K,et al.A novel scalable test problem suite for multimodal multiobjective optimization[J].Swarm and Evolutionary Computation,2019,48:62-71.
[17]LIU Y,ISHIBUCHI H,NOJIMA Y,et al.Searching for local pareto optimal solutions:A case study on polygon-based problems[C]//2019 IEEE Congress on Evolutionary Computation(CEC).New Zealand:IEEE,2019:896-903.
[18]YUE C T,LIANG J J,QU B Y,et al.Multimodal multiobjective optimization in feature selection[C]//2019 IEEE Congress on Evolutionary Computation(CEC).New Zealand:IEEE,2019:302-309.
[19]XU W W,LIANG J,YUE C T,et al.Multimodal multi-objective differential evolution algorithm forsolving nonlinear equations[J]. Application Research of Computers,2019,36(5):1305-1310.
[20]ZHANG T,LI W,WANG R.Surrogated-assisted multimodalmulti-objective optimization for hybrid renewable energy system[J].Complex & Intelligent Systems,2023,9(4):4075-4087.
[21]RABBANI M,HEIDARI R,YAZDANPARAST R.A stochastic multi-period industrial hazardous waste location-routing problem:Integrating NSGA-II and Monte Carlo simulation[J].European Journal of Operational Research,2019,272(3):945-961.
[22]DAI M,TANG D,GIRET A,et al.Multi-objective optimization for energy-efficient flexible job shop scheduling problem with transportation constraints[J].Robotics and Computer-IntegratedManufacturing,2019,59:143-157.
[23]KALYANMOY D.A fast and elitist multi-objective genetic algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
[24]ZHANG Q,LI H.MOEA/D:A multiobjective evolutionary algorithm based on decomposition[J].IEEE Transactions on Evolutionary Computation,2007,11(6):712-731.
[25]DEB K,TIWARI S.Omni-optimizer:A generic evolutionary algorithm for single and multi-objective optimization[J].European Journal of Operational Research,2008,185(3):1062-1087.
[26]SHIR O M,PREUSS M,NAUJOKS B,et al.Enhancing decision space diversity in evolutionary multiobjective algorithms[C]//Evolutionary Multi-Criterion Optimization:5th International Conference.Nantes:Springer,2009:95-109.
[27]LIU Y,ISHIBUCHI H,NOJIMA Y,et al.A double-niched evolutionary algorithm and its behavior on polygon-based problems[C]//Parallel Problem Solving from Nature-PPSN XV:15th International Conference.Coimbra:Springer International Publishing,2018:262-273.
[28]YUE C,QU B,LIANG J.A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems[J].IEEE Transactions on Evolutionary Computation,2017,22(5):805-817.
[29]ZHANG W,LI G,ZHANG W,et al.A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization[J].Swarm and Evolutionary Computation,2019,50:100569.
[30]LIANG J,GUO Q,YUE C,et al.A self-organizing multi-objec-tive particle swarm optimization algorithm for multimodal multi-objective problems[C]//Advances in Swarm Intelligence:9th International Conference.Shanghai:Springer International Publishing,2018:550-560.
[31]LIANG J,XU W,YUE C,et al.Multimodal multiobjective optimization with differential evolution[J].Swarm and Evolutionary Computation,2019,44:1028-1059.
[32]PAL M,BANDYOPADHYAY S.Differential evolution formulti-modal multi-objective problems[C]//Proceedings of the Genetic and Evolutionary Computation Conference Companion.Berlin,2019:1399-1406.
[33]LIANG J,QIAO K,YUE C,et al.A clustering-based differential evolution algorithm for solving multimodal multi-objective optimization problems[J].Swarm and Evolutionary Computation,2021,60:100788.
[34]YUE C T,LIANG J J,SUGANTHAN P N,et al.MMOGA for solving multimodal multiobjective optimization problems with local Pareto sets[C]//2020 IEEE Congress on Evolutionary Computation(CEC).IEEE,2020:1-8.
[35]LI W,YAO X,ZHANG T,et al.Hierarchy ranking method for multimodal multiobjective optimization with local Pareto fronts[J].IEEE Transactions on Evolutionary Computation,2023,27(1):98-110.
[36]LIN Q,LIN W,ZHU Z,et al.Multimodal multiobjective evolutionary optimization with dual clustering in decision and objective spaces[J].IEEE Transactions on Evolutionary Computation,2020,25(1):130-144.
[37]LIANG J,SUGANTHAN P,QU B,et al.Problem definitions and evaluation criteria for the CEC 2020 special session on multimodal multiobjective optimization[C]//Proceedings of the 2020 IEEE Congress on Evolutionary Computation(CEC).Glasgow:IEEE,2020.
[38]CHEN H K,WU G H,HUO L S,et al. Objective space division based adaptive multiobjective optimization algorithm[J].Journal of Software,2018,29(9):2649-2663.
[39]LI Z,ZOU J,YANG S,et al.A two-archive algorithm with decomposition and fitness allocation for multi-modal multi-objective optimization[J].Information Sciences,2021,574:413-430.
[40]LIU Y,YEN G G,GONG D.A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies[J].IEEE Transactions on Evolutionary Computation,2018,23(4):660-674.
[41]YUE C T,SUGANTHAN P N,LIANG J,et al.Differential evolution using improved crowding distance for multimodal multiobjective optimization[J].Swarm and Evolutionary Computation,2021,62:100849.
[42]SUN Y,YEN G G,YI Z.IGD indicator-based evolutionary algorithm for many-objective optimization problems[J].IEEE Transactions on Evolutionary Computation,2018,23(2):173-187.
[43]RIQUELME N,LUCKEN C,BARAN B.Performance metrics in multi-objective optimization[C]//2015 Latin American Computing Conference(CLEI).Salvador:IEEE,2015:1-11.
[44]DANG Q L,XU W,YUAN Y F.A dynamic resource allocation strategy with reinforcement learning for multimodal multi-objective optimization[J].Machine Intelligence Research,2022,19(2):138-152.
[45]LI B L,SHI X L,GOU C X,et al. Multivariant optimization algorithm and its convergence analysis[J].Acta Automatica Sinica,2015,41(5):949-959.
[46]ZHOU A,ZHANG Q,JIN Y.Approximating the set of Pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm[J].IEEE Transactions on Evolutionary Computation,2009,13(5):1167-1189.
[1] WANG Wei, ZHAO Yunlong, PENG Xiaoyu, PAN Xiaodong. TSK Fuzzy System Enhanced by TSVR with Cooperative Parameter Optimization [J]. Computer Science, 2025, 52(7): 75-81.
[2] HUANG Ao, LI Min, ZENG Xiangguang, PAN Yunwei, ZHANG Jiaheng, PENG Bei. Adaptive Hybrid Genetic Algorithm Based on PPO for Solving Traveling Salesman Problem [J]. Computer Science, 2025, 52(6A): 240600096-6.
[3] YANG Liwei, LI Ping, XIA Guofeng, WANG Tao. Adaptive Sliding Mode Disturbance Rejection Control for Cricket System of Improved NDO [J]. Computer Science, 2024, 51(6A): 230700229-5.
[4] WANG Xiaolong. Traffic Subarea Boundary Control Strategy Based on Nonlinear Traffic Flow Model [J]. Computer Science, 2024, 51(6A): 230900016-7.
[5] PENG Xiaoyu, PAN Xiaodong, SHEN Hanhan, HE Hongmei. Fuzzy Systems Based on Regular Vague Partitions and Their Approximation Properties [J]. Computer Science, 2024, 51(2): 79-86.
[6] WANG Tian-yuan, WU Shu-hong, LI Zhao-ji, XIN Hao-guang, LI Xuan, CHEN Yong-le. PGNFuzz:Pointer Generation Network Based Fuzzing Framework for Industry Control Protocols [J]. Computer Science, 2022, 49(10): 310-318.
[7] KANG Bo, PAN Xiao-dong, WANG Hu. Fuzzy Reasoning Method Based on Axiomatic Fuzzy Sets [J]. Computer Science, 2021, 48(11A): 57-62.
[8] LIU Meng-jun, SHA Tao, LI Dan, LIU Shu-bo. Reliable Security Lock Key Updating Scheme over Narrow Band Internet of Things [J]. Computer Science, 2019, 46(4): 137-143.
[9] TONG Ze-ping, WU Ying-qiang, REN Liang, LI Wei. Travel Time Analysis of SP-AS/RS with New Configuration for I/O Point [J]. Computer Science, 2019, 46(4): 315-320.
[10] YANG Zhen, ZHANG Wan-peng, LIU Hong-fu, WEI Zhan-yang. Research on Multi-units Control Method in RTS Games Based on PAGA [J]. Computer Science, 2018, 45(11A): 101-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!