Computer Science ›› 2025, Vol. 52 ›› Issue (10): 123-133.doi: 10.11896/jsjkx.240800013
• Computer Graphics & Multimedia • Previous Articles Next Articles
XU Hengyu1, CHEN Kun2, XU Lin1,3, SUN Mingzhai4,5, LU Zhou1
CLC Number:
[1]CHEN Y X,WEN L,PEI C W,et al.Changes of microvascular diameter in non-proliferative diabetic retinopathy[J].International Eye Science,2021,9(21):1632-1636. [2]MURSCH-EDLMAYR A S,BOLZ M,STROHMAIER C.Vascular aspects in glaucoma:from pathogenesis to therapeutic approaches[J].International Journal of Molecular Sciences,2021,22(9):4662. [3]CHEUNG C Y,MOK V,FOSTER P J,et al.Retinal imaging in Alzheimer's disease[J].Journal of Neurology,Neurosurgery & Psychiatry,2021,92(9):983-994. [4]RIM T H,TEO A W J,YANG H H S,et al.Retinal vascular signs and cerebrovascular diseases[J].Journal of Neuro-Ophthalmology,2020,40(1):44-59. [5]IKRAM M K,DE JONG F J,VINGERLING J R,et al.Are retinal arteriolar or venular diameters associated with markers for cardiovascular disorders? The Rotterdam Study[J].Investigative Ophthalmology & Visual Science,2004,45(7):2129-2134. [6]DASHTBOZORG B,MENDONÇA A M,CAMPILHO A.Anautomatic method for the estimation of arteriolar-to-venular ratio in retinal images[C]//Proceedings of the 26th IEEE International Symposium on Computer-based Medical Systems.IEEE,2013:512-513. [7]CIURICĂ S,LOPEZ-SUBLET M,LOEYS B L,et al.Arterialtortuosity:novel implications for an old phenotype[J].Hypertension,2019,73(5):951-960. [8]TELISCHAK N A,YEDAVALLI V,MASSOUD T F.Tortuosi-ty of superior cerebral veins:comparative magnetic resonance imaging morphometrics in normal subjects and arteriovenous malformation patients[J].Clinical Anatomy,2021,34(3):326-332. [9]YU S,LAKSHMINARAYANAN V.Fractal dimension and reti-nal pathology:a meta-analysis[J].Applied Sciences,2021,11(5):2376. [10]MILANI P,MONTESANO G,ROSSETTI L,et al.Vessel density,retinal thickness,and choriocapillaris vascular flow in myopic eyes on OCT angiography[J].Graefe's Archive for Clinical and Experimental Ophthalmology,2018,256:1419-1427. [11]DASHTBOZORG B,MENDONCA A M,CAMPILHO A.AnAutomatic Graph-Based Approach for Artery/Vein Classification in Retinal Images[J].IEEE Transactions on Image Proces-sing,2014,23(3):1073-1083. [12]ZHAO Y,XIE J,ZHANG H,et al.Retinal vascular network topology reconstruction and artery/vein classification via dominant set clustering[J].IEEE Transactions on Medical Imaging,2019,39(2):341-356. [13]WELIKALA R A,FOSTER P J,WHINCUP P H,et al.Automated arteriole and venule classification using deep learning for retinal images from the UK Biobank cohort[J].Computers in Biology and Medicine,2017,90:23-32. [14]REMESEIRO B,MENDONÇA A M,CAMPILHO A.Automa-tic classification of retinal blood vessels based on multilevel thresholding and graph propagation[J].The Visual Computer,2021,37:1247-1261. [16]RONNEBERGER O,FISCHER P,BROX T.U-net:Convolu-tional networks for biomedical image segmentation[C]//Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015:18th International Conference,Munich,Germany,October 5-9,2015,Proceedings,Part III 18.Springer,2015:234-241. [17]HEMELINGS R,ELEN B,STALMANS I,et al.Artery-veinsegmentation in fundus images using a fully convolutional network[J].Computerized Medical Imaging and Graphics,2019,76:101636. [18]KARLSSON R A,HARDARSON S H.Artery vein classification in fundus images using serially connected U-Nets[J].Computer Methods and Programs in Biomedicine,2022,216:106650. [19]CHEN W,YU S,MA K,et al.TW-GAN:Topology and width aware GAN for retinal artery/vein classification[J].Medical Image Analysis,2022,77:102340. [20]ZHANG J,YANG K,SHEN Z,et al.End-to-End AutomaticClassification of Retinal Vessel Based on Generative Adversarial Networks with Improved U-Net[J].Diagnostics,2023,13(6):1148. [21]WALD T,ROY S,KOEHLER G,et al.SAM.MD:Zero-shotmedical image segmentation capabilities of the Segment Anything Model[C]//Medical Imaging with Deep Learning.2023. [22]MA J,HE Y,LI F,et al.Segment Anything in Medical Images[J].arXiv:2304.12306,2023. [23]MAZUROWSKI M A,DONG H,GU H,et al.Segment any-thing model for medical image analysis:an experimental study[J].Medical Image Analysis,2023,89:102918. [24]DENG R,CUI C,LIU Q,et al.Segment anything model(sam) for digital pathology:Assess zero-shot segmentation on whole slide imaging[J].arXiv:2304.04155,2023. [25]KIRILLOV A,MINTUN E,RAVI N,et al.Segment Anything[C]//2023 IEEE/CVF International Conference on Computer Vision.2023. [26]CHEN H Y.Calibration of Retinal Oximetry Devices by Fun-dus-simulating Phantoms[D].Hefei:University of Science and Technology of China,2019. [27]TEAM G,ANIL R,BORGEAUD S,et al.Gemini:a family ofhighly capable multimodal models[J].arXiv:2312.11805,2023. [28]ROMBACH R,BLATTMANN A,LORENZ D,et al.High-reso-lution image synthesis with latent diffusion models[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:10684-10695. [29]RAMESH A,PAVLOV M,GOH G,et al.Zero-shot text-to-image generation[C]//International Conference on Machine Learning.PMLR,2021:8821-8831. [30]WU J,ZHANG Y,FU R,et al.Medical SAM Adapter:Adapting Segment Anything Model for Medical Image Segmentation[J].arXiv:2306.12620,2023. [31]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.Animage is worth 16x16 words:Transformers for image recognition at scale[J].arXiv:2010.11929,2020. [32]HU E J,SHEN Y,WALLIS P,et al.LORA:Low-rank adaptation of large language models[J].arXiv:2106.09685,2021. [33]ZHANG S,ZHENG R,LUO Y,et al.Simultaneous Arterioleand Venule Segmentation of Dual-Modal Fundus Images Using a Multi-Task Cascade Network[J].IEEE Access,2019,7:57561-57573. |
[1] | WANG Baocai, WU Guowei. Interpretable Credit Risk Assessment Model:Rule Extraction Approach Based on AttentionMechanism [J]. Computer Science, 2025, 52(10): 50-59. |
[2] | ZHENG Hanyuan, GE Rongjun, HE Shengji, LI Nan. Direct PET to CT Attenuation Correction Algorithm Based on Imaging Slice Continuity [J]. Computer Science, 2025, 52(10): 115-122. |
[3] | WEN Jing, ZHANG Songsong, LI Xufeng. Target Tracking Method Based on Cross Scale Fusion of Features and Trajectory Prompts [J]. Computer Science, 2025, 52(10): 144-150. |
[4] | SHENG Xiaomeng, ZHAO Junli, WANG Guodong, WANG Yang. Immediate Generation Algorithm of High-fidelity Head Avatars Based on NeRF [J]. Computer Science, 2025, 52(10): 159-167. |
[5] | ZHENG Dichen, HE Jikai, LIU Yi, GAO Fan, ZHANG Dengyin. Low Light Image Adaptive Enhancement Algorithm Based on Retinex Theory [J]. Computer Science, 2025, 52(10): 168-175. |
[6] | RUAN Ning, LI Chun, MA Haoyue, JIA Yi, LI Tao. Review of Quantum-inspired Metaheuristic Algorithms and Its Applications [J]. Computer Science, 2025, 52(10): 190-200. |
[7] | XIONG Zhuozhi, GU Zhouhong, FENG Hongwei, XIAO Yanghua. Subject Knowledge Evaluation Method for Language Models Based on Multiple ChoiceQuestions [J]. Computer Science, 2025, 52(10): 201-207. |
[8] | WANG Jian, WANG Jingling, ZHANG Ge, WANG Zhangquan, GUO Shiyuan, YU Guiming. Multimodal Information Extraction Fusion Method Based on Dempster-Shafer Theory [J]. Computer Science, 2025, 52(10): 208-216. |
[9] | CHEN Yuyan, JIA Jiyuan, CHANG Jingwen, ZUO Kaiwen, XIAO Yanghua. SPEAKSMART:Evaluating Empathetic Persuasive Responses by Large Language Models [J]. Computer Science, 2025, 52(10): 217-230. |
[10] | LI Sihui, CAI Guoyong, JIANG Hang, WEN Yimin. Novel Discrete Diffusion Text Generation Model with Convex Loss Function [J]. Computer Science, 2025, 52(10): 231-238. |
[11] | ZHANG Jiawei, WANG Zhongqing, CHEN Jiali. Multi-grained Sentiment Analysis of Comments Based on Text Generation [J]. Computer Science, 2025, 52(10): 239-246. |
[12] | CHEN Jiahao, DUAN Liguo, CHANG Xuanwei, LI Aiping, CUI Juanjuan, HAO Yuanbin. Text Sentiment Classification Method Based on Large-batch Adversarial Strategy and EnhancedFeature Extraction [J]. Computer Science, 2025, 52(10): 247-257. |
[13] | WANG Ye, WANG Zhongqing. Text Simplification for Aspect-based Sentiment Analysis Based on Large Language Model [J]. Computer Science, 2025, 52(10): 258-265. |
[14] | ZHAO Jinshuang, HUANG Degen. Summary Faithfulness Evaluation Based on Data Augmentation and Two-stage Training [J]. Computer Science, 2025, 52(10): 266-274. |
[15] | SUN Liangxu, LI Linlin, LIU Guoli. Sub-problem Effectiveness Guided Multi-objective Evolution Algorithm [J]. Computer Science, 2025, 52(10): 296-307. |
|