Computer Science ›› 2025, Vol. 52 ›› Issue (10): 190-200.doi: 10.11896/jsjkx.250500127
• Artificial Intelligence • Previous Articles Next Articles
RUAN Ning1, LI Chun1, MA Haoyue2, JIA Yi3, LI Tao2
CLC Number:
[1]TIAN X,LI J.A novel improved fruit fly optimization algorithm for aerodynamic shape design optimization [J].Knowledge-Based Systems,2019,179:77-91. [2]GARCÍA-RÓDENAS R,JIMÉNEZ LINARES L,LÓPEZ-GÓMEZ J A.A Memetic Chaotic Gravitational Search Algorithm for unconstrained global optimization problems [J].Applied Soft Computing,2019,79:14-29. [3]ZAMANI H,NADIMI-SHARAKI M H,GANDOMI A H.CCSA:Conscious neighborhood-based crow search algorithm for solving global optimization problems [J].Applied Soft Computing,2019,85:105583. [4]CHEN H L,XU Y T,WANG M J,et al.A balanced whale optimization algorithm for constrained engineering design problems [J].Applied Mathematical Modelling,2019,71:45-59. [5]LONG W,WU T B,LIANG X M,et al.Solving high-dimensio-nal global optimization problems using an improved sine cosine algorithm [J].Expert Systems with Applications,2019,123:108-126. [6]GARG H.A hybrid GSA-GA algorithm for constrained optimization problems [J].Information Sciences,2019,478:499-523. [7]CAN E.Variable determined for optimization of alternating energy on the load by the adaptive Taguchi method [EB/OL].https://pdfs.semanticscholar.org/f421/524b2f67bbd49e0e7109f372584003e481e2.pdf. [8]NARAYANAN A,MOORE M.Quantum-inspired genetic algorithms[C]//Proceedings of IEEE International Conference on Evolutionary Computation.IEEE,1996:61-66. [9]MENON P S,RITWIK M.A Comprehensive but not Complicated Survey on Quantum Computing [J].IERI Procedia,2014,10:144-152. [10]KIRKPATRICK S,GELATT C D,VECCHI M P.Optimization by Simulated Annealing [J].Science,1983,220(4598):671-680. [11]RASHEDI E,NEZAMABADI-POUR H,SARYAZDI S.GSA:A Gravitational Search Algorithm [J].Information Sciences,2009,179(13):2232-2248. [12]MALOSSINI A,BLANZIERI E,CALARCO T.Quantum Genetic Optimization [J].IEEE Transactions on Evolutionary Computation,2008,12(2):231-241. [13]DENG W,LIU H,XU J,et al.An Improved Quantum-Inspired Differential Evolution Algorithm for Deep Belief Network [J].IEEE Transactions on Instrumentation and Measurement,2020,69(10):7319-7327. [14]SUN J,FENG B,XU W B.Particle swarm optimization with particles having quantum behavior[C]//Proceedings of the 2004 Congress on Evolutionary Computation.IEEE,2004:325-331. [15]MA Y,TIAN W J,FAN Y Y.Improved quantum ant colony algorithm for solving TSP problem[C]//2014 IEEE Workshop on Electronics,Computer and Applications.IEEE,2014:453-456. [16]AGRAWAL R K,KAUR B,SHARMA S.Quantum basedWhale Optimization Algorithm for wrapper feature selection [J].Applied Soft Computing,2020,89(2):106092. [17]KRAUSS T,MCCOLLUM J.Solving the network shortest path problem on a quantum annealer [J].IEEE Transactions on Quantum Engineering,2020,1(1):1-12. [18]NIKOUEI R,RASOULI N,TAHMASEBI S,et al.A quantum-annealing-based approach to optimize the deployment cost of a multi-sink multi-controller wsn [J].Procedia Computer Science,2019,155(1):250-257. [19]HUSSAIN H,JAVAID M B,KHAN F S,et al.Optimal control of traffic signals using quantum annealing [J].Quantum Information Processing,2020,19:312. [20]RAJDEEP K N,HIMANSHU T,TRAVIS S H.A review ofmachine learning classification using quantum annealing for real-world applications [J].SN Computer Science,2021,2(5):365. [21]PÉREZ ARMAS L F,CREEMERS S,DELEPLANQUE S.Solving the resource constrained project scheduling problem with quantum annealing [J].Scientific Reports,2024,14:16784. [22]ZENG Q G,CUI X P,LIU B,et al.Performance of quantum annealing inspired algorithms for combinatorial optimization problems [J].Communications Physics,2024,7:249. [23]HABA R,MANO T,UEDA R,et al.Routing and schedulingoptimization for urban air mobility fleet management using quantum annealing [J].Scientific Reports,2025,15:4326. [24]LI C,YAN R W,DING Y,et al.Feature Selection and SVM Parameter Optimization Based on IBQGSA in Intrusion Detection [J].Computer Engineering and Design,2017,38(8):2227-2234. [25]LI H T,ZHANG W.SVM Flame Recognition Algorithm Based on Quantum Gravitational Search Algorithm [J].Electronic Measurement Technology,2019,42(18):81-84. [26]HUANG B L,YUAN X L.Optimal Capacity Allocation ofStand-alone Microgrid Based on LQ-GSA [J].Electric Power Engineering Technology,2019,38(6):47-54. [27]KUMAR Y,VERMA S K,SHARMA S.An Improved Quantum-Inspired Gravitational Search Algorithm to Optimize the Facial Features [J].International Journal of Pattern Recognition and Artificial Intelligence,2021,35(14):2156004. [28]JINDAL S,SACHDEVA M,KUMAR A K S.A novel quantum-behaved binary firefly algorithm with gravitational search algorithm to optimize the features for human activity recognition [J].International Journal of Modern Physics C,2022,33(11):2250146. [29]TONG L,YANG L,ZHAO X,et al.How can a hybrid quantum-inspired gravitational search algorithm decrease energy consumption in IoT-based software-defined networks? [J].Sustainable Computing:Informatics and Systems,2023,40:100920. [30]JINDAL S,SACHDEVA M,KUSHWAHA A K S.Quantum behaved intelligent variant of gravitational search algorithm with deep neural networks for human activity recognition [J].Kuwait Journal of Science,2023,50(2A):1-20. [31]GHOSH S,KUILA P,BEY M,et al.Quantum-inspired gravitational search algorithm-based low-price binary task offloading for multi-users in unmanned aerial vehicle-assisted edge computing systems [J].Expert Systems with Applications,2025,263:125762. [32]SHARMA K P,LAL G,SHUKLA M,et al.Quantum behaved binary gravitational search algorithm with random forest for twitter spammer detection [J].Results in Engineering,2025,25:103993. [33]DO T Q,NGUYEN H T,MCNIVEN B D E,et al.An auto-adjusting hybrid quantum genetic algorithm-Spectre platform for the multi-objective optimization of analog circuit sizing [J].Alexandria Engineering Journal,2025,116:574-585 [34]GENCER K,GENCER G.Hybrid deep learning approach for brain tumor classification using EfficientNetB0 and novel quantum genetic algorithm [J].PeerJ Computer Science,2025,11:e2556. [35]FAÍLDE D,VIQUEIRA J D,MUSSA JUANE M,et al.Using differential evolution to avoid local minima in variational quantum algorithms [J].Scientific Reports,2023,13:16230. [36]KUMAR J,SAXENA D,SINGH A K,et al.A quantum con-trolled-NOT neural network-based load forecast and management model for smart grid [J].IEEE Systems Journal,2023,17(4):5714-5725. [37]DEY A,BHATTACHARYYA S,DEY S,et al.A quantum inspired differential evolution algorithm for automatic clustering of real life datasets [J].Multimedia Tools and Applications,2024,83:8469-8498. [38]BEY M,KUILA P,NAIK B B.Quantum-inspired differentialevolution with decoding using hashing for efficient user allocation in edge computing environment [J].IEEE Transactions on Emerging Topics in Computing,2024,13(2):481-495. [39]PRIYANKA B,NAIK B B,REDDY T P.Energy and cost aware workflow offloading using quantum inspired differential evolution in the cloud environments [J].Journal of Network and Systems Management,2025,33(1):19. [40]JIN P.Research on Improved Quantum-behaved Particle Swarm Optimization and Its Application in Optimization Problems [D].Xuzhou:China University of Mining and Technology,2019. [41]RADHA R,GOPALAKRISHNAN R.A medical analytical system using intelligent fuzzy level set brain image segmentation based on improved quantum particle swarm optimization [J].Microprocessors and Microsystems,2020,79:103283. [42]XU Y X,ZHANG M J,WANG D G.Chaotic Encoding Quantum Particle Swarm Optimization Algorithm for Flexible Job Shop Scheduling Problem [J].Journal of System Simulation,2024,36(10):2371-2382. [43]GONG C,ZHOU N,XIA S,et al.Quantum particle swarm optimization algorithm based on diversity migration strategy [J].Future Generation Computer Systems,2024,157:445-458. [44]JIANG Y,ZHENG K,ZHANG M,et al.An enhanced Lévyflight quantum particle swarm optimization for stress monitoring in jacket wind turbines [J].Ocean Engineering,2025,324:120704. [45]XIA G Q,HAN Z W,ZHAO B,et al.Global Path Planning for Unmanned Surface Vehicle Based on Improved Quantum Ant Colony Algorithm [EB/OL].https://onlinelibrary.wiley.com/doi/10.1155/2019/2902170. [46]WANG Y,MA L J,ZHANG F Q,et al.Collision DetectionMethod in Virtual Reality Based on Quantum Ant Colony Algorithm [J].Journal of Nanjing University of Science and Technology,2022,46(6):735-741. [47]BI Z Q,YU X W,WANG B N,et al.Fast Localization Tech-nique for Fault Sections in Distribution Networks Based on Quantum Ant Colony Algorithm [J].Journal of Shanghai Jiao Tong University,2024,58(5):693-708. [48]SARKAR M,PRADHAN J,SINGH A K,et al.A novel hybrid quantum architecture for path planning in quantum-enabled autonomous mobile robots [J].IEEE Transactions on Consumer Electronics,2024,70(3):5597-5606. [49]SUSEENDHAR P,SRIDHAR K P.A niche quantum ant colony multifaceted routing algorithm for WSN-based IoT networks in the emerging quantum industry [J].Journal of Internet Services and Information Security,2024,14(4):418-435. [50]NARDIN A,D’ANDREAGIOVANNI F.A quantum-inspiredant colony optimization algorithm for parking lot rental to shared e-scooter services [J].Algorithms,2024,17(2):80. [51]EGGER D J,GAMBELLA C,MARECEK J,et al.Quantumcomputing for finance:State-of-the-art and future prospects [J].IEEE Transactions on Quantum Engineering,2020,1:1-24. [52]CHAKRABARTI S,KRISHNAKUMAR R,MAZZOLA G,et al.A threshold for quantum advantage in derivative pricing [J].Quantum,2021,5:463-504. [53]MARTYN J M,RALL P.Halving the cost of quantum algorithms with randomization [J].NPJ Quantum Information,2025,11(47):1-11. [54]NEUKART F,COMPOSTELLA G,SEIDEL C,et al.Traffic flow optimization using a quantum annealer [J].Frontiers in ICT,2017,4:29. [55]YARKONI S,LEIB M,SKOLIK A,et al.Volkswagen andquantum computing:An industrial perspective [J].Digitale Welt,2019,3(2):34-37. [56]SHOR P W.Algorithms for quantum computation:discrete logarithms and factoring[C]//Proceedings of the 35th Annual Symposium on Foundations of Computer Science.IEEE,1994:124-134. [57]MONE G.The quantum threat [J].Communications of theACM,2020,63(7):12-14. [58]SCHULD M,PETRUCCIONE F.Supervised Learning withQuantum Computers [M].Cham:Springer,2018. [59]WITTEK P.Quantum Machine Learning:What Quantum Computing Means to Data Mining [M].New York:Academic Press,2014. [60]WIEBE N,BRAUN D,LLOYD S.Quantum algorithm for data fitting [J].Physical Review Letters,2012,109(5):050505. [61]LUO M X,CHEN X B,YANG Y X,et al.Geometry of quantum computation with qudits [J].Scientific Reports,2014,4(1):4044. [62]SCHULD M,SINAYSKIY I,PETRUCCIONE F.Prediction by linear regression on a quantum computer [J].Physical Review A,2016,94(2):022342. [63]WANG G M,Quantum algorithm for linear regression [J].Physical Review A,2017,96(1):012335. [64]LLOYD S,MOHSENI M,REBENTROST P.Quantum algo-rithms for supervised and unsupervised machine learning [J].arXiv:1307.0411,2013. [65]LLOYD S,REBENTROST P,MOHSENI M.Quantum principal component analysis [J].Nature Physics,2014,10(9):631-633. [66]REBENTROST P,MOHSENI M,LLOYD S.Quantum support vector machine for big data classification [J].Physical Review Letters,2014,113(13):130503. [67]REBENTROST P,BROMLEY T R,WEEDBROOK C,et al.Quantum recurrent neural network [J].Physical Review A,2018,98(4):042308. [68]SHI J J,XIAO Z M.QuanTest:entanglement-guided testing of quantum neural network systems [J].ACM Transactions on Software Engineering and Methodology,2025,34(2):1-32. [69]SCHULD M,SINAYSKIY I,PETRUCCIONE F,et al.Thequest for a quantum neural network [J].Quantum Information Processing,2014,13(11):2567-2586. [70]SCHULD M,SINAYSKIY I,PETRUCCIONE F.Simulating a perceptron on a quantum computer [J].Physics Letters A,2015,379(7):660-663. [71]WAN K H,DAHLSTEN O,KRISTJÁNSSON H,et al.Quantum generalisation of feedforward neural networks [J].NPJ Quantum Information,2017,3(1):36-43. [72]WIEBE N,KAPOOR A,SVOR K M.Quantum perceptron mo-dels[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.Curran Associates Inc.,2016:4006-4014. [73]YAMAMOTO A Y,SUNDQVIST K M,LI P,et al.Simulation of a multidimensional input quantum perceptron [J].Quantum Information Processing,2018,17(6):128-139. [74]SCHÜTZHOLD R.Pattern recognition on a quantum computer [J].Physical Review A,2003,67(6):062311. [75]TRUGENBERGER C A.Quantum pattern recognition [J].Quantum Information Processing,2002,1(6):471-493. [76]VENTURA D,MARTINEZ T.Quantum associative memory[J].Information Sciences,2000,124(1):273-296. [77]LOW G H,YODER T J,CHUANG I L.Quantum inference on Bayesian networks [J].Physical Review A,2014,89(6):062315. [78]SENTÍS G,CALSAMIGLIA J,MUÑOZ-TAPIA R,et al.Quantum learning without quantum memory [J].Scientific Reports,2012,2(708):1-8. [79]BARRY J,BARRY D T,AARONSON S.Quantum partially observable Markov decision processes [J].Physical Review A,2014,90(3):032311. [80]CLARK L A,HUANG W,BARLOW T M,et al.Hidden quantum Markov models and open quantum systems with instantaneous feedback[C]//Interdisciplinary Symposium on Complex Systems.Cham:Springer,2015:143-151. [81]RATH M,DATE H.Quantum powered credit risk assessment:a novel approach using Hybrid Quantum-Classical Deep Neural Network for Row-Type Dependent Predictive Analysis [J].EPJ Quantum Technology,2025,12(75):1-27. [82]WIEBE N,KAPOOR A,SVORE K.Quantum deep learning[J].Quantum Information & Computation,2016,16(7/8):541-587. [83]AMIN M H,ANDRIYASH E,ROLFE J,et al.Quantum Boltzmann machine [J].Physical Review X,2018,8(2):021050. [84]WANG Z H,CHOONG B C M,HUANG T,et al.Is quantum optimization ready? An effort towards neural network compression using adiabatic quantum computing [J].Future Generation Computer Systems,2026,174:107908. [85]KIEFEROVÁ M,WIEBE N.Tomography and generative data modeling via quantum Boltzmann training [J].Physical Review A,2017,96(6):062327. [86]GAO X,ZHANG Z Y,DUAN L M.A quantum machine lear-ning algorithm based on generative models [J].Science Advances,2018,4(12):eaat9004. [87]LANGIONE M,TILLEMANN-DICK C,KUMAR A,et al.Where will quantum computers create value-and when? [R].Boston:Boston Consulting Group,2019. [88]DEBENEDICTIS E P.A future with quantum machine learning [J].Computer,2018,51(2):68-71. [89]YAN F,VENEGAS A S E.Lessons from Twenty Years ofQuantum Image Processing [J].ACM Transactions on Quantum Computing,2025,6(1):1-29. [90]LORENZ R,PEARSON A,MEICHANETZIDIS K.QNLP inpractice:Running compositional models of meaning on a quantum computer [J].Journal of Artificial Intelligence Research,2023,76:1305-1342. [91]FEYNMAN R P.Simulating physics with computers [J].International Journal of Theoretical Physics,1982,21(6/7):467-488. [92]BUDDE F,VOLZ D.The next big thing? Quantum computing’s potential impact on chemicals[M].New York:McKinsey & Company,2019. [93]KÜHN M,ZANKER S,DEGLMANN P,et al.Accuracy and resource estimations for quantum chemistry on a near-term quantum computer [J].Journal of Chemical Theory and Computation,2019,15(9):4764-4780. [94]NEUKART F.Quantencomputing in der Automobilindustrie[J].Digitale Welt,2021,5(2):34-37. [95]ZIEGLER M,LEONHARDT T.Quantum computing.Appliednow [J].Digitale Welt,2019,3(2):50-52. |
[1] | WANG Baocai, WU Guowei. Interpretable Credit Risk Assessment Model:Rule Extraction Approach Based on AttentionMechanism [J]. Computer Science, 2025, 52(10): 50-59. |
[2] | ZHENG Hanyuan, GE Rongjun, HE Shengji, LI Nan. Direct PET to CT Attenuation Correction Algorithm Based on Imaging Slice Continuity [J]. Computer Science, 2025, 52(10): 115-122. |
[3] | XU Hengyu, CHEN Kun, XU Lin, SUN Mingzhai, LU Zhou. SAM-Retina:Arteriovenous Segmentation in Dual-modal Retinal Image Based on SAM [J]. Computer Science, 2025, 52(10): 123-133. |
[4] | WEN Jing, ZHANG Songsong, LI Xufeng. Target Tracking Method Based on Cross Scale Fusion of Features and Trajectory Prompts [J]. Computer Science, 2025, 52(10): 144-150. |
[5] | SHENG Xiaomeng, ZHAO Junli, WANG Guodong, WANG Yang. Immediate Generation Algorithm of High-fidelity Head Avatars Based on NeRF [J]. Computer Science, 2025, 52(10): 159-167. |
[6] | ZHENG Dichen, HE Jikai, LIU Yi, GAO Fan, ZHANG Dengyin. Low Light Image Adaptive Enhancement Algorithm Based on Retinex Theory [J]. Computer Science, 2025, 52(10): 168-175. |
[7] | XIONG Zhuozhi, GU Zhouhong, FENG Hongwei, XIAO Yanghua. Subject Knowledge Evaluation Method for Language Models Based on Multiple ChoiceQuestions [J]. Computer Science, 2025, 52(10): 201-207. |
[8] | WANG Jian, WANG Jingling, ZHANG Ge, WANG Zhangquan, GUO Shiyuan, YU Guiming. Multimodal Information Extraction Fusion Method Based on Dempster-Shafer Theory [J]. Computer Science, 2025, 52(10): 208-216. |
[9] | CHEN Yuyan, JIA Jiyuan, CHANG Jingwen, ZUO Kaiwen, XIAO Yanghua. SPEAKSMART:Evaluating Empathetic Persuasive Responses by Large Language Models [J]. Computer Science, 2025, 52(10): 217-230. |
[10] | LI Sihui, CAI Guoyong, JIANG Hang, WEN Yimin. Novel Discrete Diffusion Text Generation Model with Convex Loss Function [J]. Computer Science, 2025, 52(10): 231-238. |
[11] | ZHANG Jiawei, WANG Zhongqing, CHEN Jiali. Multi-grained Sentiment Analysis of Comments Based on Text Generation [J]. Computer Science, 2025, 52(10): 239-246. |
[12] | CHEN Jiahao, DUAN Liguo, CHANG Xuanwei, LI Aiping, CUI Juanjuan, HAO Yuanbin. Text Sentiment Classification Method Based on Large-batch Adversarial Strategy and EnhancedFeature Extraction [J]. Computer Science, 2025, 52(10): 247-257. |
[13] | WANG Ye, WANG Zhongqing. Text Simplification for Aspect-based Sentiment Analysis Based on Large Language Model [J]. Computer Science, 2025, 52(10): 258-265. |
[14] | ZHAO Jinshuang, HUANG Degen. Summary Faithfulness Evaluation Based on Data Augmentation and Two-stage Training [J]. Computer Science, 2025, 52(10): 266-274. |
[15] | SUN Liangxu, LI Linlin, LIU Guoli. Sub-problem Effectiveness Guided Multi-objective Evolution Algorithm [J]. Computer Science, 2025, 52(10): 296-307. |
|