Computer Science ›› 2026, Vol. 53 ›› Issue (1): 89-96.doi: 10.11896/jsjkx.241200190

• Database & Big Data & Data Science • Previous Articles     Next Articles

KAN-based Unsupervised Multivariate Time Series Anomaly Detection Network

WANG Cheng, JIN Cheng   

  1. School of Computer Science, Fudan University, Shanghai 200438, China
  • Received:2024-12-26 Revised:2025-03-12 Published:2026-01-08
  • About author:WANG Cheng,born in 1985,Ph.D candidate.His main research interest is time series anomaly detection.
    JIN Cheng,born in 1978,Ph.D,professor,Ph.D supervisor,is a member of CCF(No.08763S).His main research interests include computer vision and multimedia information retrieval.
  • Supported by:
    National Natural Science Foundation of China(62472097).

Abstract: Time series data is widely present in fields such as finance,healthcare,industry,and transportation.Time Series Ano-maly Detection(TSAD) is crucial for ensuring system stability and safety.Most current time series anomaly detection methods are unsupervised due to the difficulty in collecting anomaly samples.However,these methods commonly face the problem of over-generalization,where the model can not only reconstruct normal samples,but also effectively reconstruct anomaly samples,leading to poor anomaly detection performance.Therefore,this paper proposes a time series anomaly detection method based on Kolmo-gorov-Arnold representation theory,called TS-KAN.TS-KAN leverages its parameter efficiency and local plasticity to better fit normal samples and alleviate the overgeneralization problem.Additionally,this paper introduces a local feature enhancement layer,namely Local-KAN,to enhance the representation of temporal features and improve contextual anomaly detection capability.Experiments on five mainstream time series anomaly detection datasets demonstrate that TS-KAN significantly outperforms existing methods in anomaly detection capability.

Key words: Time series anomaly detection, KAN, Transformer, Memory module, Deep learning

CLC Number: 

  • TP391
[1]ZONG B,SONG Q,MIN MARTIN R Q,et al.Deep autoenco-ding gaussian mixture model for unsupervised anomaly detection[C]//International Conference on Learning Representations.2018.
[2]YAIRI T,TAKEISHI N,ODA T,et al.A data-driven healthmonitoring method for satellite housekeeping data based on probabilistic clustering and dimensionality reduction[J].IEEE Transactions on Aerospace and Electronic Systems,2017,53(3):1384-1401.
[3]ZHOU Q H,HE S B,LIU H Y,et al.Label-free multivariate time series anomaly detection[J].IEEE Transactions on Know-ledge and Data Engineering,2024,36(7):3166-3179.
[4]FREHNER R B,WU K S,SIM A,et al.Detecting Anomalies in Time Series Using Kernel Density Approaches[J].IEEE Access,2024,12:33420-33439.
[5]SHEN L F,LI Z C,KWOK J.Timeseries anomaly detectionusing temporal hierarchical one-class network[J].Advances in Neural Information Processing Systems,2020,33:13016-13026.
[6]SHIN Y J,LEE S,TARIQ S,et al.Itad:integrative tensor-based anomaly detection system for reducing false positives of satellite systems[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.2020:2733-2740.
[7]DONG C,TAO J F,CHAO Q,et al.Subsequence time series clustering-based unsupervised approach for anomaly detection of axial piston pumps[J].IEEE Transactions on Instrumentation and Measurement,2023,72:1-12.
[8]HUNDMAN K,CONSTANTINOU V,LAPORTE C,et al.Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mi-ning.2018:387-395.
[9]TARIQ S,LEE S,SHIN Y J,et al.Detecting anomaliesin space using multivariate convolutional LSTM with mixtures of probabilistic PCA[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:2123-2133.
[10]PARK D,HOSHI Y,KEMP CHARLES C.A multimodal ano-maly detector for robot-assisted feeding using an lstm-based variational autoencoder[J].IEEE Robotics and Automation Letters,2018,3(3):1544-1551.
[11]SU Y,ZHAO Y J,NIU C H,et al.Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:2828-2837.
[12]LI Z H,ZHAO Y J,HAN J Q,et al.Multivariate time seriesanomaly detection and interpretation using hierarchical inter-metric and temporal embedding[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.2021:3220-3230.
[13]XU J,WU H,WANG J,et al.Anomaly Transformer:Time Series Anomaly Detection with Association Discrepancy[C]//International Conference on Learning Representations.2022.
[14]SUN Y Y,CHEN Z D,FENG C,et al.UMTS-Mixer:Time Series Anomaly Detection Based on Temporal Correlation and Channel Correlation[J].Computer Systems and Applications,2024,33(1):127-133.
[15]YE L,HE Z.Multiscale time series anomaly detection incorporating wavelet decomposition[J].Journal of Computer Applications,2024,44(10):3300-3306.
[16]GONG D,LIU L Q,LE V,et al.Memorizing normality to detect anomaly:Memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:1705-1714.
[17]PARK H J,NOH J,HAM B.Learning memory-guided normality for anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:14372-14381.
[18]SONG J,KIM K,OH J,et al.MEMTO:Memory-guided transformer for multivariate time series anomaly detection[J].arXiv:2312.02530,2023.
[19]LIU Z M,WANG Y X,VAIDYA S,et al.KAN:Kolmogorov-arnold networks[J].arXiv:2404.19756,2024.
[20]LIU Z M,MA P C,WANG Y X,et al.KAN 2.0:Kolmogorov-Arnold Networks Meet Science[J].arXiv:2408.10205,2024.
[21]SIDHARTH S S.Chebyshev polynomial-based kolmogorov-arnold networks:An efficient architecture for nonlinear function approximation[J].arXiv:2405.07200,2024.
[22]AGHAEI A A.fKAN:Fractional Kolmogorov-Arnold Networks with trainable Jacobi basis functions[J].arXiv:2406.07456,2024.
[23]BOZORGASL Z,CHEN H.Wav-KAN:Wavelet kolmogorov-arnold networks[J].arXiv:2405.12832,2024.
[24]LI C X,LIU X Y,LI W Y,et al.U-KAN Makes Strong Backbone for Medical Image Segmentation and Generation[J].arXiv:2406.02918,2024.
[25]VACA-RUBIO C J,BLANCO L,PEREIRA R,et al.Kolmogorov-arnold networks(kans) for time series analysis[J].arXiv:2405.08790,2024.
[26]GENET R,INZIRILLO H.TKAN:Temporal Kolmogorov-Arnold Networks[J].arXiv:2405.07344,2024.
[27]SONODA S,MURATA N.Neural network with unboundedactivation functions is universal approximator[J].Applied and Computational Harmonic Analysis,2017,43(2):233--268.
[28]LAI M J,SHEN Z M.The kolmogorov superposition theoremcan break the curse of dimensionality when approximating high dimensional functions[J].arXiv:2112.09963,2021.
[29]ELFWING S,UCHIBE E,DOYA K.Sigmoid-weighted linearunits for neural network function approximation in reinforcement learning[J].Neural networks,2018,107:3-11.
[30]SUBAKAN C,RAVANELLI M,CORNELL S,et al.Attention is all you need in speech separation[C]//2021 IEEE International Conference on Acoustics,Speech and Signal Processing(ICASSP).2021:21-25.
[31]SARFRAZ M S,CHEN M Y,LAYER L,et al.Position:Quo Vadis,Unsupervised Time Series Anomaly Detection?[C]//Proceedings of the 41st International Conference on Machine Learning.2024:43461-43476.
[32]SU Y,ZHAO Y J,NIU C H,et al.Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:2828-2837.
[33]HUNDMAN K,CONSTANTINOU V,LAPORTE C,et al.Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mi-ning.2018:387-395.
[34]LI D,CHEN D C,JIN B H,et al.MAD-GAN:Multivariateanomaly detection for time series data with generative adversarial networks[C]//International Conference on Artificial Neural Networks.2019:703-716.
[35]ABDULAAL A,LIU Z H,LANCEWICKI T.Practical approach to asynchronous multivariate time series anomaly detection and localization[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.2021:2485-2494.
[36]WU R,KEOGH E J.Current time series anomaly detectionbenchmarks are flawed and are creating the illusion of progress[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(3):2421-2429.
[1] HUANG Miaomiao, WANG Huiying, WANG Meixia, WANG Yejiang , ZHAO Yuhai. Review of Graph Embedding Learning Research:From Simple Graph to Complex Graph [J]. Computer Science, 2026, 53(1): 58-76.
[2] XUE Jingyan, XIA Jianan, HUO Ruili, LIU Jie, ZHOU Xuezhong. Review of Retinal Image Analysis Methods for OCT/OCTA Based on Deep Learning [J]. Computer Science, 2026, 53(1): 128-140.
[3] ZHOU Bingquan, JIANG Jie, CHEN Jiangmin, ZHAN Lixin. EvR-DETR:Event-RGB Fusion for Lightweight End-to-End Object Detection [J]. Computer Science, 2026, 53(1): 153-162.
[4] YIN Shi, SHI Zhenyang, WU Menglin, CAI Jinyan, YU De. Deep Learning-based Kidney Segmentation in Ultrasound Imaging:Current Trends and Challenges [J]. Computer Science, 2025, 52(9): 16-24.
[5] JIANG Yunliang, JIN Senyang, ZHANG Xiongtao, LIU Kaining, SHEN Qing. Multi-scale Multi-granularity Decoupled Distillation Fuzzy Classifier and Its Application inEpileptic EEG Signal Detection [J]. Computer Science, 2025, 52(9): 37-46.
[6] ZENG Lili, XIA Jianan, LI Shaowen, JING Maike, ZHAO Huihui, ZHOU Xuezhong. M2T-Net:Cross-task Transfer Learning Tongue Diagnosis Method Based on Multi-source Data [J]. Computer Science, 2025, 52(9): 47-53.
[7] DENG Hong, CHEN Yan, YANG Hongbo, ZHAO Feng, JIANG Yongzhuo, GUO Tao, WANG Weilian. Application of End-to-End Convolutional Kolmogorov-Arnold Networks in Atrial Fibrillation Heart Sound Recognition [J]. Computer Science, 2025, 52(9): 62-70.
[8] LI Yaru, WANG Qianqian, CHE Chao, ZHU Deheng. Graph-based Compound-Protein Interaction Prediction with Drug Substructures and Protein 3D Information [J]. Computer Science, 2025, 52(9): 71-79.
[9] HU Hailong, XU Xiangwei, LI Yaqian. Drug Combination Recommendation Model Based on Dynamic Disease Modeling [J]. Computer Science, 2025, 52(9): 96-105.
[10] LUO Chi, LU Lingyun, LIU Fei. Partial Differential Equation Solving Method Based on Locally Enhanced Fourier NeuralOperators [J]. Computer Science, 2025, 52(9): 144-151.
[11] LIU Leyuan, CHEN Gege, WU Wei, WANG Yong, ZHOU Fan. Survey of Data Classification and Grading Studies [J]. Computer Science, 2025, 52(9): 195-211.
[12] DENG Jiayan, TIAN Shirui, LIU Xiangli, OUYANG Hongwei, JIAO Yunjia, DUAN Mingxing. Trajectory Prediction Method Based on Multi-stage Pedestrian Feature Mining [J]. Computer Science, 2025, 52(9): 241-248.
[13] LIU Wei, XU Yong, FANG Juan, LI Cheng, ZHU Yujun, FANG Qun, HE Xin. Multimodal Air-writing Gesture Recognition Based on Radar-Vision Fusion [J]. Computer Science, 2025, 52(9): 259-268.
[14] TANG Boyuan, LI Qi. Review on Application of Spatial-Temporal Graph Neural Network in PM2.5 ConcentrationForecasting [J]. Computer Science, 2025, 52(8): 71-85.
[15] DING Zhengze, NIE Rencan, LI Jintao, SU Huaping, XU Hang. MTFuse:An Infrared and Visible Image Fusion Network Based on Mamba and Transformer [J]. Computer Science, 2025, 52(8): 188-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!