Computer Science ›› 2025, Vol. 52 ›› Issue (9): 160-169.doi: 10.11896/jsjkx.250200083
• High Performance Computing • Previous Articles Next Articles
HAN Yingmei1,2, LI Bin1,2, LI Kun1,2, ZHOU Qinglei1,3, YU Shiliang1
CLC Number:
[1]RIVEST R L,ADLEMAN L,DERTOUZOS M L.On databanks and privacy homomorphisms[M]//Foundations of Secure Computation.New York:Academic Press,1978:169-179. [2]GENTRY C.Fully homomorphic encryption using ideal lattices[C]//Proceedings of the 41st Annual ACM Symposium on Theo-ry of Computing.ACM,2009:169-178. [3]VIAND A,JATTKE P,HITHNAWI A.SoK:Fully homomorphic encryption compilers[C]//2021 IEEE Symposium on Security and Privacy(SP).IEEE,2021:1092-1108. [4]CHEN Z,MA Y,CHEN T,et al.Towards efficient Kyber onFPGAs:A processor for vector of polynomials[C]//2020 25th Asia and South Pacific Design Automation Conference(ASP-DAC).IEEE,2020:247-252. [5]ZHANG N,YANG B,CHEN C,et al.Highly efficient architecture of NewHope-NIST on FPGA using low-complexity NTT/INTT[J].IACR Transactions on Cryptographic Hardware and Embedded Systems,2020(2):49-72. [6]MU J,REN Y,WANG W,et al.Scalable and conflict-free NTT hardware accelerator design:Methodology,proof,and implementation[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2022,42(5):1504-1517. [7]DUONG-NGOC P,LEE H.Configurable mixed-radix numbertheoretic transform architecture for lattice-based cryptography[J].IEEE Access,2022,10:12732-12741. [8]ZHANG Y,WANG C,KHALID A,et al.Ultra high-speed polynomial multiplications for lattice-based cryptography on FPGAs[J].IEEE Transactions on Emerging Topics in Computing,2022,10(4):1993-2005. [9]YE Z,CHEUNG R C C,HUANG K.PipeNTT:A pipelinednumber theoretic transform architecture[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2022,69(10):4068-4072. [10]RENTERÍA-MEJÍA C P,VELASCO-MEDINA J.Hardwaredesign of an NTT-based polynomial multiplier[C]//2014 IX Southern Conference on Programmable Logic(SPL).IEEE,2014:1-5. [11]RENTERÍA-MEJÍA C P,VELASCO-MEDINA J.High-throughput ring-LWE cryptoprocessors[J].IEEE Transactions on Very Large Scale Integration(VLSI) Systems,2017,25(8):2332-2345. [12]TAN W,WANG A,LAO Y,et al.Pipelined high-throughput NTT architecture for lattice-based cryptography[C]//2021 Asian Hardware Oriented Security and Trust Symposium(AsianHOST).IEEE,2021:1-4. [13]LYUBASHEVSKY V,MICCIANCIO D,PEIKERT C,et al.SWIFFT:A modest proposal for FFT hashing[C]//Fast Software Encryption:15th International Workshop.Berlin:Sprin-ger,2008:54-72. [14]HIRNER F,MERT A C,ROY S S.Proteus:A Pipelined NTT Architecture Generator[J].IEEE Transactions on Very Large Scale Integration(VLSI) Systems,2024,32(7):1228-1238. [15]ZHAO Y,XIE R,XIN G,et al.A high-performance domain-specific processor with matrix extension of RISC-V for module-LWE applications[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2022,69(7):2871-2884. [16]RIAZI M S,LAINE K,PELTON B,et al.HEAX:An architecture for computing on encrypted data[C]//Proceedings of the Twenty-fifth International Conference on Architectural Support for Programming Languages and Operating Systems.2020:1295-1309. [17]PALUDO R,SOUSA L.NTT architecture for a linux-readyRISC-V fully-homomorphic encryption accelerator[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2022,69(7):2669-2682. [18]KURNIAWAN S,DUONG-NGOC P,LEE H.Configurablememory-based NTT architecture for homomorphic encryption[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2023,70(10):3942-3946. [19]DUONG-NGOC P,KWON S,YOO D,et al.Area-efficient number theoretic transform architecture for homomorphic encryption[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2022,70(3):1270-1283. [20]SAMARDZIC N,FELDMANN A,KRASTEV A,et al.F1:Afast and programmable accelerator for fully homomorphic encryption[C]//MICRO-54:54th Annual IEEE/ACM International Symposium on Microarchitecture.2021:238-252. [21]LONGA P,NAEHRIG M.Speeding up the number theoretictransform for faster ideal lattice-based cryptography[C]//Cryptology and Network Security:15th International Conference.Springer,2016:124-139. [22]NI Z,KHALID A,LIU W,et al.Towards a lightweight CRYSTALS-Kyber in FPGAs:An ultra-lightweight BRAM-free NTT core[C]//Proceedings of the IEEE International Symposium on Circuits and Systems(ISCAS).2023:1-5. [23]JATI A,GUPTA N,CHATTOPADHYAY A,et al.A configurable CRYSTALS-Kyber hardware implementation with side-channel protection[J].ACM Transactions on Embedded Computing Systems,2024,23(2):1-25. [24]NGUYEN D T,DANG V B,GAJ K.High-level synthesis in implementing and benchmarking number theoretic transform in lattice-based post-quantum cryptography using software/hardware codesign[C]//Applied Reconfigurable Computing.Architectures,Tools,and Applications:16th International Sympo-sium.Springer,2020:247-257. [25]DI MATTEO S,GERFO M L,SAPONARA S.VLSI Design and FPGA implementation of an NTT hardware accelerator for Homomorphic seal-embedded library[J].IEEE Access,2023,11(1):72498-72508. [26]GENG Y,HU X,LI M,et al.Rethinking parallel memory access pattern in number theoretic transform design[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2023,70(5):1689-1693. |
[1] | QIAN Zekai, DING Xiaoou, SUN Zhe, WANG Hongzhi, ZHANG Yan. Intelligent Evidence Set Selection Method for Diverse Data Cleaning Tasks [J]. Computer Science, 2024, 51(8): 124-132. |
[2] | ZHONG Zhenyu, LIN Yongliang, WANG Haotian, LI Dongwen, SUN Yufei, ZHANG Yuzhi. Automatic Pipeline Parallel Training Framework for General-purpose Computing Devices [J]. Computer Science, 2024, 51(12): 129-136. |
[3] | DENG Shengnan, LUO Taiyu, HUANG Jingcai, REN Yuqing, SONG Wei, SU Chang, LEI Lili, HU Guanghui, XU Hong. Design and Implementation of Natural Gas Intelligent Scheduling Computer Platform System [J]. Computer Science, 2023, 50(6A): 220700258-7. |
[4] | ZHANG Bolin, LI Bin, YAN Yunfei, WEI Yuanxin, ZHOU Qinglei. ZUC High Performance Data Encryption Scheme Based on FPGA [J]. Computer Science, 2023, 50(11): 374-382. |
[5] | FU Si-qing, LI Tie-jun, ZHANG Jian-min. Architecture Design for Particle Transport Code Acceleration [J]. Computer Science, 2022, 49(6): 81-88. |
[6] | QIN Xiao-yue, HUANG Ru-wei, YANG Bo. NTRU Type Fully Homomorphic Encryption Scheme over Prime Power Cyclotomic Rings [J]. Computer Science, 2022, 49(5): 341-346. |
[7] | ZHU Zong-wu, HUANG Ru-wei. Secure Multi-party Computing Protocol Based on Efficient Fully Homomorphic Encryption [J]. Computer Science, 2022, 49(11): 345-350. |
[8] | LIU Dan, GUO Shao-zhong, HAO Jiang-wei, XU Jin-chen. Implementation of Transcendental Functions on Vectors Based on SIMD Extensions [J]. Computer Science, 2021, 48(6): 26-33. |
[9] | ZHANG Yuan-ming, YU Jia-rui, JIANG Jian-bo, LU Jia-wei, XIAO Gang. Intermediate Data Transmission Pipeline Optimization Mechanism for MapReduce Framework [J]. Computer Science, 2021, 48(2): 41-46. |
[10] | WANG Guo-peng, YANG Jian-xin, YIN Fei, JIANG Sheng-jian. Computing Resources Allocation with Load Balance in Modern Processor [J]. Computer Science, 2020, 47(8): 41-48. |
[11] | CHEN Xiao-jie,ZHOU Qing-lei,LI Bin. Energy-efficient Password Recovery Method for 7-Zip Document Based on FPGA [J]. Computer Science, 2020, 47(1): 321-328. |
[12] | LI Meng-tian, HU Bin. RLWE-based Fully Homomorphic Encryption Scheme with Batch Technique [J]. Computer Science, 2019, 46(3): 209-216. |
[13] | SHI Jing-qi, YANG Geng, SUN Yan-jun, BAI Shuang-jie and MIN Zhao-e. Efficient Parallel Algorithm of Fully Homomorphic Encryption Supporting Operation of Floating-point Number [J]. Computer Science, 2018, 45(5): 116-122. |
[14] | MAO He-feng, HU Bin. Homomorphic Evaluation of Lightweight Block Cipher over Integers [J]. Computer Science, 2018, 45(11): 169-175. |
[15] | WU Qi, WANG Xing-wei, HUANG Min. OpenFlow Switch Packets Pipeline Processing Mechanism Based on SDN [J]. Computer Science, 2018, 45(10): 295-299. |
|