Computer Science ›› 2019, Vol. 46 ›› Issue (6A): 305-308.

• Network & Communication • Previous Articles     Next Articles

Three-dimensional Geographic Opportunistic Routing Based on Energy Harvesting Wireless Sensor Networks

WANG Chen-yang, LIN Hui   

  1. College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023,China
  • Online:2019-06-14 Published:2019-07-02

Abstract: Using energy harvesting technology,the nodes in wireless sensor networks can gain energy from the environment,and keep working for a long time with a small battery capacity.Considering the WSNs mostly deployed in three-dimensional space in practical applications,based on the study of traditional geographic routing protocols,this paper proposed a three-dimensional geographic opportunistic routing algorithm for energy harvesting wireless sensor networks.First,the algorithm divides the space into cubes,and chooses an appropriate cube as next forward region.The nodes in the region calculate the back off time according to the residual energy and delivery rate.The node with shortest back off time becomes the transmission node.The simulation result shows that this algorithm can improve the data delivery rate effectively,balance the energy consuming of the nodes,reduce the average packet delivery time and make the throughput better.

Key words: Energy harvesting, Geographic routing, Opportunistic routing, Three-dimensional

CLC Number: 

  • TN911.2
[1]KANSAL A,HSU J,ZAHEDI S,et al.Power management in energy harvesting sensor networks[J].ACM Transactions on Embedded Computing Systems,2007,6(4):32.
[2]BANDYOPADHYAY S,CHANDRAKASAN A P.Platform Architecture for Solar,Thermal,and Vibration Energy Combining With MPPT and Single Inductor[J].IEEE Journal of Solid-State Circuits,2012,47(9):2199-2215.
[3]ULUKUS S,YENER A,ERKIP E,et al.Energy Harvesting Wireless Communications:A Review of Recent Advances[J].IEEE Journal on Selected Areas in Communications,2015,33(3):360-381.
[4]BI S,ZENG Y,ZHANG R.Wireless powered communication networks:an overview[J].IEEE Wireless Communications,2016,23(2):10-18.
[5]KANSAL A,HSU J,SRIVASTAVA M,et al.Harvesting aware power management for sensor networks[C]∥Design Automation Conference,2006,ACM/IEEE.IEEE,2006:651-656.
[6]DONG Y,WANG J,SHIM B,et al.DEARER:A Distance-and-Energy-Aware Routing with Energy Reservation for Energy Harvesting Wireless Sensor Networks[J].IEEE Journal on Selected Areas in Communications,2016,34(12):3798-3813.
[7]KWON H,NOH D,KIM J,et al.Low-Latency Routing for Energy-Harvesting Sensor Networks[C]∥International Conference on Ubiquitous Intelligence and Computing.Springer-Verlag,2007:422-433.
[8]ZHI A E,TAN H P.Adaptive opportunistic routing protocol for energy harvesting wireless sensor networks[C]∥IEEE International Conference on Communications.IEEE,2012:318-322.
[10]ABDALLAH A E,FEVENS T,OPATRNY J.High delivery rate position-based routing algorithms for 3D ad hoc networks[J].Computer Communications,2008,31(4):807-817.
[12]BISWAS S,MORRIS R.Opportunistic routing in multi-hop wireless networks[J].Microcomputer Information,2004,34(1):69-74.
[13]SPACHOS P,CHATZIMISIOS P,HATZINAKOS D,et al.Energy aware opportunistic routing in wireless sensor networks [C]∥IEEE Globecom Workshops.2012:405-409.
[1] SHEN Jia-fang, QIAN Li-ping, YANG Chao. Non-orthogonal Multiple Access and Multi-dimension Resource Optimization in EH Relay NB-IoT Networks [J]. Computer Science, 2022, 49(5): 279-286.
[2] HUANG Xin-quan, LIU Ai-jun, LIANG Xiao-hu, WANG Heng. Load-balanced Geographic Routing Protocol in Aerial Sensor Network [J]. Computer Science, 2022, 49(2): 342-352.
[3] WANG Ying-kai, WANG Qing-shan. Reinforcement Learning Based Energy Allocation Strategy for Multi-access Wireless Communications with Energy Harvesting [J]. Computer Science, 2021, 48(7): 333-339.
[4] KOU Xi-chao, ZHANG Hong-rui, FENG Jie, ZHENG Ya-yu. Distortion Correction Algorithm for Complex Document Image Based on Multi-level TextDetection [J]. Computer Science, 2021, 48(12): 249-255.
[5] GUO Qi-cheng, DU Xiao-yu, ZHANG Yan-yu, ZHOU Yi. Three-dimensional Path Planning of UAV Based on Improved Whale Optimization Algorithm [J]. Computer Science, 2021, 48(12): 304-311.
[6] LIANG Zheng-you, HE Jing-lin, SUN Yu. Three-dimensional Convolutional Neural Network Evolution Method for Facial Micro-expression Auto-recognition [J]. Computer Science, 2020, 47(8): 227-232.
[7] CHEN Pei-pei, LI Tao-shen, FANG Xing, WANG Zhe. Study on Secure Beamforming for Full-duplex Energy Harvesting Relaying System [J]. Computer Science, 2020, 47(6): 316-321.
[8] SU Fan-jun,DU Ke-yi. Trust Based Energy Efficient Opportunistic Routing Algorithm in Wireless Sensor Networks [J]. Computer Science, 2020, 47(2): 300-305.
[9] TIAN Xian-zhong, YAO Chao, ZHAO Chen, DING Jun. 5G Network-oriented Mobile Edge Computation Offloading Strategy [J]. Computer Science, 2020, 47(11A): 286-290.
[10] LI Zheng-yang, TAO Yang, ZHOU Yuan-lin, YANG Liu. Energy-balanced Multi-hop Cluster Routing Protocol Based on Energy Harvesting [J]. Computer Science, 2020, 47(11A): 296-302.
[11] CHI Kai-kai, XU Xing-yuan, HU Ping. RF Energy Source Deployment Schemes Maximizing Total Energy Harvesting Power [J]. Computer Science, 2019, 46(9): 120-124.
[12] FAN Xing-ran, SONG Guo-zhi, LI Jia-zheng. Low-power Mapping Method for Three-dimensional Network on Chip Based on Hybrid Chaotic Big Bang-big Crunch [J]. Computer Science, 2019, 46(8): 100-105.
[13] LI Yue-feng. 3D Retrieval Algorithm Based on Multi-feature [J]. Computer Science, 2019, 46(6A): 266-269.
[14] LIANG Ping-yuan, LI Jie, PENG Jiao, WANG Hui. Research on 3D Dynamic Clustering Routing Algorithm Based on Cooperative MIMO for UWSN [J]. Computer Science, 2019, 46(6A): 336-342.
[15] WANG Xiao-yan, LIU Qi-qi, HUANG Xiao-jie, JIANG Wei-wei, XIA Ming. Multi-contrast Carotid MRI 3D Registration Method Based on Spatial Alignment and Contour Matching [J]. Computer Science, 2019, 46(5): 241-246.
Full text



No Suggested Reading articles found!