Computer Science ›› 2019, Vol. 46 ›› Issue (6A): 375-379.

• Information Security • Previous Articles     Next Articles

Modeling and Stability Analysis for SIRS Model with Network Topology Changes

LIU Xiao-dong, WEI Hai-ping, CAO Yu   

  1. College of Computer and Communication Engineering,Liaoning Shihua University,Fushun,Liaoning 113000,China
  • Online:2019-06-14 Published:2019-07-02

Abstract: This paper proposed an improved model to tackle the problem that the network topology changes is not considered in the classic SIRS (Susceptible-infected-recovered-susceptible) model.The threshold and the correlation between the topology and transmission process are deduced by Lyapunov stability theory.In the spread process of virus,computer virus will disappear ultimately when the system meets the threshold condition,which proves that there exists an equilibrium point of local virus when the system does not meet the threshold condition,and from which the limiting conditions for stability of the equilibrium point is also reached.Simulated experiment results indicate that the theoretical conclusions are valid and the SIRS model with network topology changes can simulate the spread process of actual computer virus better than the existing SIRS model.

Key words: Complex networks, Network topology changes, SIRS model, Threshold condition

CLC Number: 

  • TP393
[1]KEPHART J O,WHITE S R.Directed-graph epidemiological models of computer viruses[C]∥Proceedings of the 1991 IEEE Symposium on Security and Privacy.Oakland,California,USA:IEEE Computer Society Press,1991:343- 359.
[2]PASTOR-SATORRAS R,VESPINGNANI A.Epidemic spreading in scale-free networks[J].Physical Review Letters,2001,86(14):3200-3203.
[3]PASTOR-SATORRAS R,VAZQUEZ A,VESPIGNANI A.Dynamical and correlation properties of the Internet[J].Physical Review Letters,2001,87(25):258701.
[4]MORENO Y,PASTOR-SATORRAS R,VESPIGNANI A. Epidemic outbreaks in complex heterogeneous networks[J].Eur.Phys.J.B,2002,26(4):521- 529.
[5]PASTOR-SATORRAS R,VESPIGNANI A.Epidemics and immunization in scale-free networks[OL].https://arXiv.org/abs/cond-mat/0205260.
[6]KEPHART J O,WHITE S R,CHESS D M.computers and epidemiology[J].IEEE Spectrum,1993,30(5):20-26.
[7]KEPHART J O,WHITE S R.Directed-graph epidemiological models of computer viruses[C]∥Proceedings of the 1991 IEEE Computer society Symposium on Research in security and Privacy.Oakland,CA.Piscataway:IEEE Press 1991:343-359.
[8]KIM J,RADHAKRISHNAN S,DHALL S K.Measurement and analysis of worm propagation on internet network topology [C]∥Proceedings of the 13th International Conference on Computer Communications and Networks(ICCN 2004).Chicago,IL,Piscataway:IEEE Press,2004:495-500.
[9]HAN X,TAN Q L.Dynamical behavior of computer virus on internet[J].Applied Mathematics and Computation,2010,217(6):2520-2526.
[10]MISHRA B K,JHA N.Fixed Period of temporaryImmunity after run of antimalicious software on computer nodes[J].Applied Mathematics and Computation,2007,190(2):1207-1212.
[11]MISHRA B K,PANDEY S K.Fuzzy epidemic model for the transmission of worms in computer network[J].Nonlinear Analysis:Real World Applications:Real World Applications,2010,11(5):4335-4341.
[12]马知恩,周义仓.传染病动力学的数学建模与研究[M].北京:科技出版社,2004.
[13]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006:72-85.
[14]李从清.系统稳定性的劳斯判据与赫尔维茨判据的等价性论证[J].天津城市建设学院学报,2009,15(3):207-210.
[15]何艳辉,唐三一.经典SIR模型辨识和参数估计问题[J].应用数学和力学,2013,34(3):252-258.
[16]曹宇.传染病动力学模型研究[D].沈阳:东北大学,2014.
[17]叶晓梦,杨小帆.基于两阶段免疫接种的SIRS计算机病毒传播模型[J].计算机应用,2013,33(3):739-742.
[18]彭梅,李传东,何兴.基于直接免疫的SEIR计算机病毒传播模型[J].重庆师范大学学报(自然科学版),2013,30(1):77-80.
[19]冯丽萍,王鸿斌,冯素琴.改进的SIR计算机病毒传播模型[J].计算机应用,2011,31(7):1891-1893.
[20]张安勇,邵世芬,苏丽君.基于Netlogo的计算机网络病毒传播模型SIRH及仿真[J].青岛大学学报(自然科学版),2014,27(2):39-44.
[21]徐兰芳,习爱民,范小峰.计算机网络病毒传播模型SIRH[J].计算机工程与科学,2009,31(1):4-6,30.
[22]刘丹,殷亚文,宋明.基于SIR模型的微博信息扩散规律仿真分析[J].北京邮电大学学报(社会科学版),2014,16(3):28-33.
[23]曹宇,井元伟,袁峰,等.复杂网络上带有非线性感染率的SIRS模型分析[J].东北大学学报(自然科学版),2012,33(1):17-20.
[1] LI Jia-wen, GUO Bing-hui, YANG Xiao-bo, ZHENG Zhi-ming. Disease Genes Recognition Based on Information Propagation [J]. Computer Science, 2022, 49(1): 264-270.
[2] WANG Xue-guang, ZHANG Ai-xin, DOU Bing-lin. Non-linear Load Capacity Model of Complex Networks [J]. Computer Science, 2021, 48(6): 282-287.
[3] MA Yuan-yuan, HAN Hua, QU Qian-qian. Importance Evaluation Algorithm Based on Node Intimate Degree [J]. Computer Science, 2021, 48(5): 140-146.
[4] YIN Zi-qiao, GUO Bing-hui, MA Shuang-ge, MI Zhi-long, SUN Yi-fan, ZHENG Zhi-ming. Autonomous Structural Adjustment of Crowd Intelligence Network: Begin from Structure of Biological Regulatory Network [J]. Computer Science, 2021, 48(5): 184-189.
[5] ZHAO Man-yu, YE Jun. Synchronization of Uncertain Complex Networks with Sampled-data and Input Saturation [J]. Computer Science, 2021, 48(11A): 481-484.
[6] ZHAO Lei, ZHOU Jin-he. ICN Energy Efficiency Optimization Strategy Based on Content Field of Complex Networks [J]. Computer Science, 2019, 46(9): 137-142.
[7] SHAN Na, LI Long-jie, LIU Yu-yang, CHEN Xiao-yun. Link Prediction Based on Correlation of Nodes’ Connecting Patterns [J]. Computer Science, 2019, 46(12): 20-25.
[8] FU Li-dong, LI Dan, LI Zhan-li. Following-degree Tree Algorithm to Detect Overlapping Communities in Complex Networks [J]. Computer Science, 2019, 46(12): 322-326.
[9] GAO Hua-bing, SONG Cong-cong, CHEN Bo, LIU Zhi. Traffic Efficiency Analysis of Traffic Road Network Based on Percolation Theory [J]. Computer Science, 2019, 46(11A): 127-133.
[10] SONG Yan-qiu, LI Gui-jun, LI Hui-jia. Community Label Detection Algorithm Based on Potential Background Information [J]. Computer Science, 2018, 45(6A): 314-317.
[11] LUO Jin-liang, JIN Jia-cai and WANG Lei. Evaluation Method for Node Importance in Air Defense Networks Based on Functional Contribution Degree [J]. Computer Science, 2018, 45(2): 175-180.
[12] CEHN Jun-hua, BIAN Zhai-an, LI Hui-jia, GUAN Run-dan. Measuring Method of Node Influence Based on Relative Entropy [J]. Computer Science, 2018, 45(11A): 292-298.
[13] LV Ya-nan, HAN Hua, JIA Cheng-feng, WAN Yan-juan. Link Prediction Algorithm Based on Node Intimate Degree [J]. Computer Science, 2018, 45(11): 92-96.
[14] LU Yi-hong, ZHANG Zhen-ning and YANG Xiong. Community Structure Detection Algorithm Based on Nodes’ Eigenvectors [J]. Computer Science, 2017, 44(Z6): 419-423.
[15] JIANG Mao-sheng, GE Jian-fei and CHEN Ling. Link Prediction in Networks with Node Attributes Based on Space Mapping [J]. Computer Science, 2017, 44(7): 257-261.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!