Computer Science ›› 2020, Vol. 47 ›› Issue (1): 136-143.doi: 10.11896/jsjkx.181202316
• Computer Graphics & Multimedia • Previous Articles Next Articles
LV Yong-qiang1,2,MIN Wei-qing2,DUAN Hua1,JIANG Shu-qiang2
CLC Number:
[1]BOSSARD L,GUILLAUMIN M,VANGOOL L.Food-101-mining discriminative components with random forests[C]∥European Conference on Computer Vision.2014:446-461. [2]AO S,LING C X.Adapting new categories for food recognition with deep representation[C]∥IEEE International Conference on Data Mining Workshop.2015:1196-1203. [3]HERRANZ L,JIANG S,XU R.Modeling restaurant context for food recognition[J].IEEE Transactions on Multimedia,2017,19(2):430-440. [4]AIZAWA K,MARUYAMA Y,LI H,et al.Food balance estimation by using personal dietary tendencies in a multimedia foodlog[J].IEEE Transactions on Multimedia,2013,15(8):2176-2185. [5]ZHENG J,WANG Z J,ZHU C.Food image recognition via superpixel based low-level and mid-level distance coding for smart home applications[J].Sustainability,2017,9(5):856. [6]BOLANOS M,FERRA A,RADEVA P.Food ingredients recognition through multi-label learning[C]∥International Confe-rence on Image Analysis and Processing.2017:394-402. [7]ZHANG N,DONAHUE J,GIRSHICK R,et al.Part-based r-cnns for fine-grained category detection[C]∥European Conference on Computer Vision.2014:834-849. [8]CHRISTODOULIDIS S,ANTHIMOPOULOS M,MOUGIA- KAKOU S.Food recognition for dietary assessment using deep convolutional neural networks[C]∥International Conference on Image Analysis and Processing.2015:58-465. [9]MARTINEL,NIKI,FORESTI G,et al.Wide-Slice Residual Networks for Food Recognition[C]∥IEEE Winter Conference on Applications of Computer Vision IEEE Computer Society.2018:567-576. [10]KOCH G,ZEMEL R,SALAKHUTDINOV R.Siamese neural networks for one-shot image recognition[C]∥International Conference on Machine Learning.2015. [11]VINYALS O,BLUNDELL C,LILLICRAP T,et al.Matching networks for one shot learning[C]∥Advances in Neural Information Processing Systems.2016:3630-3638. [12]SUNG F,YANG Y,ZHANG L,et al.Learning to compare:Relation network for few-shot learning[C]∥IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2017. [13]FINN C,ABBEEL P,LEVINE S.Model-agnostic meta-learning for fast adaptation of deep networks[M].arXiv:1703.03400,2017. [14]ANDRYCHOWIEZ M,DENIL M,GOMEZ S,et al.Learning to learn by gradient descent by gradient descent[C]∥Advances in Neural Information Processing Systems.2016:3981-3989. [15]CEALLE S,MANINIS K,PONTTUEST J,et al.One-Shot Video Object Segmentation[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE,2017. [16]HOFFE E,AILON N.Deep metric learning using triplet net- work[M].In International Workshop on Similarity-Based Pattern Recognition,2015. [17]HERRMANS A,BEYER L,LEIBE B.In defense of the triplet loss for person re-identification[J].arXiv:1703.07737,2017. [18]GENG M,WANG Y,XIANG T,et al.Deep transfer learning for person re-identification[J].arXiv:1611.05244,2016. [19]LI Y,LI Y,YAN H.Deep joint discriminative learning for vehicle re-identification and retrieval[C]∥IEEE International Conference on Image Processing.IEEE,2017:395-399. [20]CHEN J,NGO C W.Deep-based ingredient recognition for cooking recipe retrieval[C]∥Proceedings of the ACM International Conference on Multimedia.2016:32-41. [21]CHEN X,ZHOU H,ZHU Y,et al.Chinesefoodnet:A largescale image dataset for chinese food recognition[J].arXiv:1705.02743,2017. [22]MIN W Q,JIANG S Q,LIU L H,et al.A Survey on food computing[J/OL].https://arxiv.org/abs/1808.07202?context=cs.mm [23]KAWANO Y,YANAI K.Food image recognition with deep convolutional features[C]∥Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing:Adjunct Publication.2014:589-593. [24]KAGAYA H,AIZAWA K,OGAWA M.Food detection and recognition using convolutional neural network[C]∥Procee-dings of the ACM International Conference on Multimedia.2014:1085-1088. [25]XU R,HERRANZ L,JIANG S Q.Geolocalized Modeling for Dish Recognition[J].IEEE Transactions on Multimedia,2015,17(8):1187-1199. [26]MIN W Q,JIANG S Q,SANG J T,et al.Being a super cook:Joint food attributes and multimodal content modeling for recipe retrieval and exploration[J].IEEE Transactions on Multimedia,2017(5):1100-1113. [27]MIN W Q,BAO B K,MEI S H,et al.You are what you eat:Exploring rich recipe information for cross-region food analysis[J].IEEE Transactions on Multimedia,2017,20(4):950-964. [28]WANG H,MIN W,LI X,et al.Where and what to eat:Simultaneous restaurant and dish recognition from food image[C]∥Pacific Rim Conference on Multimedia.2016:520-528. [29]MEI S H,MIN W Q,LIU L H.Faster R-CNN based food image retrieval and classification [J].Journal of Nanjing University of Information Science & Technology (Natural Science Edition),2017,9(6):635-641. [30]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [31]KINGMA D,BA J.Adam:A method for stochastic optimization[C]∥arXiv:1412.6980.2014. [32]MENG Y,GUO Y.Deep Triplet Ranking Networks for One- Shot Recognition[J].arXiv:1804.07275,2018. |
[1] | PENG Yun-cong, QIN Xiao-lin, ZHANG Li-ge, GU Yong-xiang. Survey on Few-shot Learning Algorithms for Image Classification [J]. Computer Science, 2022, 49(5): 1-9. |
[2] | FANG Zhong-li, WANG Zhe, CHI Zi-qiu. Dual-stream Reconstruction Network for Multi-label and Few-shot Learning [J]. Computer Science, 2022, 49(1): 212-218. |
[3] | WANG Hang, CHEN Xiao, TIAN Sheng-zhao, CHEN Duan-bing. SAR Image Recognition Based on Few-shot Learning [J]. Computer Science, 2020, 47(5): 124-128. |
|