Computer Science ›› 2022, Vol. 49 ›› Issue (1): 146-152.doi: 10.11896/jsjkx.201000156
• Database & Big Data & Data Science • Previous Articles Next Articles
LIU Yi, MAO Ying-chi, CHENG Yang-kun, GAO Jian, WANG Long-bao
CLC Number:
[1]AGGARWALC C.Outlier analysis[C]//Data mining.Cham:Springer,2015:237-263. [2]SCHUBERT E,WOJDANOWSKI R,ZIMEK A,et al.On eva-luation of outlier rankings and outlier scores[C]//Proceedings of the 2012 SIAM International Conference on Data Mining.Philadelphia:SIAM,2012:1047-1058. [3]CAMPOS G O,ZIMEK A,MEIRA W.An unsupervised boosting strategy for outlier detection ensembles[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining.Cham:Springer,2018:564-576. [4]ZHAO Y,NASRULLAH Z,HRYNIEWICKI M K,et al.LSCP:Locally selective combination in parallel outlier ensembles[C]//Proceedings of the 2019 SIAM International Confe-rence on Data Mining.Philadelphia:SIAM,2019:585-593. [5]CHEN Y P,YU L,CHEN H.Traffic Anomaly Detection Based on Wavelet Neural Network and ARMA Model in Big Data Environment[J].Journal of Chongqing Institute of Technology(Natural Science),2019,33(10):149-154. [6]CHEN J,SATHE S,AGGARWAL C,et al.Outlier detectionwith autoencoder ensembles[C]//Proceedings of the 2017 SIAM International Conference on Data Mining.Philadelphia:SIAM,2017:90-98. [7]XING H J,HAO Z.Novelty Detection Method Based on Global and Local Discriminative Adversarial Autoencoder[J].Computer Science,2021,48(6):202-209. [8]CHALAPATHY R,CHAWLA S.Deep learning for anomaly detection:A survey[J].arXiv:1901.03407,2019. [9]LAZAREVIC A,KUMAR V.Feature bagging for outlier detection[C]//Proceedings of the eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining.New York:ACM,2005:157-166. [10]RAYANA S,AKOGLU L.Less is more:building selectiveanomaly ensembles[J].ACM TKDD,2016,10(4):1-33. [11]LIU F T,TING K M,ZHOU Z H.Isolation forest[C]//2008 Eighth IEEE International Conference on Data Mining.Pisca-taway:IEEE,2008:413-422. [12]RAYANA S,ZHONG W,AKOGLU L.Sequential ensemblelearning for outlier detection:A bias-variance perspective[C]//2016 IEEE 16th International Conference on Data Mining (ICDM).Piscataway:IEEE,2016:1167-1172. [13]GAO J,TAN P N.Converting output scores from outlier detection algorithms into probability estimates[C]//Sixth International Conference on Data Mining (ICDM'06).Piscataway:IEEE,2006:212-221. [14]ZIMEK A,GAUDET M,CAMPELLO R J G B,et al.Subsampling for efficient and effective unsupervised outlier detection ensembles[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2013:428-436. [15]ZIMEK A,CAMPELLO R J G B,SANDER J.Data perturbationfor outlier detection ensembles[C]//Proceedings of the 26th International Conference on Scientific and Statistical Database Management.New York:ACM,2014:1-12. [16]PASILLAS-DÍAZ J R,RATTÉ S.Bagged subspaces for unsu-pervised outlier detection[J].Computational Intelligence,2017,33(3):507-523. [17]NGUYEN H V,ANG H H,GOPALKRISHNAN V.Miningoutliers with ensemble of heterogeneous detectors on random subspaces[C]//International Conference on Database Systems for Advanced Applications.Berlin,Heidelberg:Springer,2010:368-383. [18]CAMPOS G O,ZIMEK A,MEIRA W.An unsupervised boosting strategy for outlier detection ensembles[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining.Cham:Springer,2018:564-576. [19]VAN STEIN B,VAN LEEUWEN M,BÄCK T.Local subspace-based outlier detection using global neighborhoods[C]//2016 IEEE International Conference on Big Data (Big Data).Piscata-way:IEEE,2016:1136-1142. [20]BREUNIG M M,KRIEGEL H P,NG R T,et al.LOF:identi-fying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data.New York:ACM,2000:93-104. [21]KRIEGEL H P,KRÖGER P,SCHUBERT E,et al.LoOP:local outlier probabilities[C]//Proceedings of the 18th ACMConfe-rence on Information and Knowledge Management.New York:ACM,2009:1649-1652. [22]RAYANA S.ODDS Library[DB/OL].http://odds.cs.stonybrook.edu,2016/2020-03-15. [23]CAMPOS G O,ZIMEK A,SANDER J,et al.On the evaluation of unsupervised outlier detection:measures,datasets,and an empirical study[J].Data Mining and Knowledge Discovery,2016,30(4):891-927. |
[1] | ZHOU Gang, GUO Fu-liang. Research on Ensemble Learning Method Based on Feature Selection for High-dimensional Data [J]. Computer Science, 2021, 48(6A): 250-254. |
[2] | LIU Li-cheng, XU Yi-fan, XIE Gui-cai, DUAN Lei. Outlier Detection and Semantic Disambiguation of JSON Document for NoSQL Database [J]. Computer Science, 2021, 48(2): 93-99. |
[3] | ZHONG Ying-yu, CHEN Song-can. High-order Multi-view Outlier Detection [J]. Computer Science, 2020, 47(9): 99-104. |
[4] | LIU Zhen-peng, SU Nan, QIN Yi-wen, LU Jia-huan, LI Xiao-fei. FS-CRF:Outlier Detection Model Based on Feature Segmentation and Cascaded Random Forest [J]. Computer Science, 2020, 47(8): 185-188. |
[5] | LIU Peng, YE Bin. Linear Discriminant Analysis of High-dimensional Data Using Random Matrix Theory [J]. Computer Science, 2019, 46(6A): 423-426. |
[6] | LI Chang-jing,ZHAO Shu-liang,CHI Yun-xian. Outlier Detection Algorithm Based on Spectral Embedding and Local Density [J]. Computer Science, 2019, 46(3): 260-266. |
[7] | FENG Gui-lan, ZHOU Wen-gang. Spark-based Parallel Outlier Detection Algorithm of K-nearest Neighbor [J]. Computer Science, 2018, 45(11A): 349-352. |
[8] | YING Yi, REN Kai, LIU Ya-jun. Network Log Analysis Technology Based on Big Data [J]. Computer Science, 2018, 45(11A): 353-355. |
[9] | XU Dong, WANG Yan-jun, MENG Yu-long, ZHANG Zi-ying. Improved Data Anomaly Detection Method Based on Isolation Forest [J]. Computer Science, 2018, 45(10): 155-159. |
[10] | GOU Jie, MA Zi-tang and ZHANG Zhe-cheng. PODKNN:A Parallel Outlier Detection Algorithm for Large Dataset [J]. Computer Science, 2016, 43(7): 251-254. |
[11] | LI Meng-jie, XIE Qiang and DING Qiu-lin. Orthogonal Non-negative Matrix Factorization for K-means Clustering [J]. Computer Science, 2016, 43(5): 204-208. |
[12] | XU Tong-de. High-dimensional Data Discretization Method Based on Improved LLE [J]. Computer Science, 2015, 42(Z6): 146-150. |
[13] | HONG Sha, LIN Jia-li and ZHANG Yue-liang. Density-based Outlier Detection on Uncertain Data [J]. Computer Science, 2015, 42(5): 230-233. |
[14] | JIANG Yuan-kai, ZHENG Hong-yuan and DING Qiu-lin. On Density Based Outlier Detection for Uncertain Data [J]. Computer Science, 2015, 42(4): 172-176. |
[15] | WANG Wei, LI Lei and ZHANG Zhi-hong. Improvement of C4.5 Algorithm with Free Noise Capacity [J]. Computer Science, 2015, 42(12): 268-271. |
|