Computer Science ›› 2024, Vol. 51 ›› Issue (6): 239-246.doi: 10.11896/jsjkx.230300218
• Computer Graphics & Multimedia • Previous Articles Next Articles
LIAO Junshuang, TAN Qinhong
CLC Number:
[1]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[C]//Advances in Neural Information Processing Systems.2017:5998-6008. [2]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:Unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:779-788. [3]LIN T Y,GOYAL P,GIRSHICK R,et al.Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2017:2980-2988. [4]REN S,HE K,GIRSHICK R,et al.Faster r-CNN:Towards real-time object detection with region proposal networks[J].ar-Xiv:1506.01497,2015. [5]DUAN K,BAI S,XIE L,et al.Centernet:Keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:6569-6578. [6]LAW H,DENG J.Cornernet:Detecting objects as paired keypoints[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:734-750. [7]LIN T Y,DOLLÁR P,GIRSHICK R,et al.Feature pyramidnetworks for object detection[C]//Proceedings of the IEEE Conference onComputer Vision and Pattern Recognition.2017:2117-2125. [8]LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8759-8768. [9]WOO S,PARK J,LEE J Y,et al.Cbam:Convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:3-19. [10]DOSOVITSKIY A,BEYER L,KOLESNIKOV A,et al.Animage is worth 16×16 words:Transformers for image recognition at scale[C]//International Conference on Learning Representations.2021:1-22. [11]TOUVRON H,CORD M,DOUZE M,et al.Training data-efficient image Transformers & distillation through attention[C]//International Conference on Machine Learning.PMLR,2021:10347-10357. [12]WANG W,XIE E,LI X,et al.Pyramid vision Transformer:Aversatile backbone for dense prediction without convolutions[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:568-578. [13]WU H,XIAO B,CODELLA N,et al.Cvt:Introducing convolutions to vision Transformers[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:22-31. [14]LI Y,CHEN Y P,WANG T,et al.Tokens-to-token vit:Training vision Transformers from scratch on imagenet[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:558-567. [15]CARION N,MASSA F,SYNNAEVE G,et al.End-to-end object detection with Transformers[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK,Part I 16.Springer International Publishing,2020:213-229. [16]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [17]ZHU X,SU W,LU L,et al.Deformable detr:DeformableTransformers for end-to-end object detection[C]//International Conference on Learning Representations.2021:1-16. [18]GAO P,ZHENG M,WANG X,et al.Fast convergence of detr with spatially modulated co-attention[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2021:3621-3630. [19]YANG J,LI C,ZHANG P,et al.Focal Attention for Long-Range Interactions in Vision Transformers[C]//Advances in Neural Information Processing Systems.2021:30008-30022. [20]LIU Z,HU H,LIN Y,et al.Swin Transformer v2:Scaling up capacity and resolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:12009-12019. [21]ZHANG G,LUO Z,YU Y,et al.Accelerating DETR convergence via semantic-aligned matching[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:949-958. [22]LI F,ZHANG H,LIU S,et al.Dn-detr:Accelerate detr training by introducing query denoising[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:13619-1362. |
[1] | LIU Jiasen, HUANG Jun. Center Point Target Detection Algorithm Based on Improved Swin Transformer [J]. Computer Science, 2024, 51(6): 264-271. |
[2] | LI Yuehao, WANG Dengjiang, JIAN Haifang, WANG Hongchang, CHENG Qinghua. LiDAR-Radar Fusion Object Detection Algorithm Based on BEV Occupancy Prediction [J]. Computer Science, 2024, 51(6): 215-222. |
[3] | WU Xiaoqin, ZHOU Wenjun, ZUO Chenglin, WANG Yifan, PENG Bo. Salient Object Detection Method Based on Multi-scale Visual Perception Feature Fusion [J]. Computer Science, 2024, 51(5): 143-150. |
[4] | JIAN Yingjie, YANG Wenxia, FANG Xi, HAN Huan. 3D Object Detection Based on Edge Convolution and Bottleneck Attention Module for Point Cloud [J]. Computer Science, 2024, 51(5): 162-171. |
[5] | BAI Xuefei, SHEN Wucheng, WANG Wenjian. Salient Object Detection Based on Feature Attention Purification [J]. Computer Science, 2024, 51(5): 125-133. |
[6] | XU Hao, LI Fengrun, LU Lu. Metal Surface Defect Detection Method Based on Dual-stream YOLOv4 [J]. Computer Science, 2024, 51(4): 209-216. |
[7] | LIU Zeyu, LIU Jianwei. Video and Image Salient Object Detection Based on Multi-task Learning [J]. Computer Science, 2024, 51(4): 217-228. |
[8] | HAO Ran, WANG Hongjun, LI Tianrui. Deep Neural Network Model for Transmission Line Defect Detection Based on Dual-branch Sequential Mixed Attention [J]. Computer Science, 2024, 51(3): 135-140. |
[9] | ZHANG Yang, XIA Ying. Object Detection Method with Multi-scale Feature Fusion for Remote Sensing Images [J]. Computer Science, 2024, 51(3): 165-173. |
[10] | WANG Weijia, XIONG Wenzhuo, ZHU Shengjie, SONG Ce, SUN He, SONG Yulong. Method of Infrared Small Target Detection Based on Multi-depth Feature Connection [J]. Computer Science, 2024, 51(1): 175-183. |
[11] | SHI Dianxi, LIU Yangyang, SONG Linna, TAN Jiefu, ZHOU Chenlei, ZHANG Yi. FeaEM:Feature Enhancement-based Method for Weakly Supervised Salient Object Detection via Multiple Pseudo Labels [J]. Computer Science, 2024, 51(1): 233-242. |
[12] | YANG Yi, SHEN Sheng, DOU Zhiyang, LI Yuan, HAN Zhenjun. Tiny Person Detection for Intelligent Video Surveillance [J]. Computer Science, 2023, 50(9): 75-81. |
[13] | ZHU Ye, HAO Yingguang, WANG Hongyu. Deep Learning Based Salient Object Detection in Infrared Video [J]. Computer Science, 2023, 50(9): 227-234. |
[14] | LIU Yubo, GUO Bin, MA Ke, QIU Chen, LIU Sicong. Design of Visual Context-driven Interactive Bot System [J]. Computer Science, 2023, 50(9): 260-268. |
[15] | WANG Xu, WU Yanxia, ZHANG Xue, HONG Ruize, LI Guangsheng. Survey of Rotating Object Detection Research in Computer Vision [J]. Computer Science, 2023, 50(8): 79-92. |
|