Computer Science ›› 2025, Vol. 52 ›› Issue (10): 382-394.doi: 10.11896/jsjkx.240800046
• Information Security • Previous Articles Next Articles
YUAN Mengjiao, LU Tianliang, HUANG Wanxin, HE Houhan
CLC Number:
[1]SKOUDIS E,ZELTSER L.Malware:Fighting malicious code[M].Prentice Hall Professional,2004. [2]SIKORSKI M,HONIG A.Practical malware analysis:thehands-on guide to dissecting malicious software[M].No Starch Press,2012. [3]GOPINATH M,SETHURAMAN S C.A comprehensive survey on deep learning based malware detection techniques[J].Computer Science Review,2023,47:100529. [4]CUI Z,XUE F,CAI X,et al.Detection of malicious code va-riants based on deep learning[J].IEEE Transactions on Industrial Informatics,2018,14(7):3187-3196. [5]KALASH M,ROCHAN M,MOHAMMED N,et al.Malwareclassification with deep convolutional neural net-works[C]//2018 9th IFIP International Conference on New Technologies,Mobility and Security(NTMS).2018:1-5. [6]KORNISH D,GEARY J,SANSING V,et al.Malware classification using deep convolutional neural networks[C]//2018 IEEE Applied Imagery Pattern Recognition Workshop(AIPR).2018:1-6. [7]GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and harnessing adversarial examples[J].arXiv:1412.6572,2014. [8]PAPERNOT N,MCDANIEL P,WU X,et al.Distillation as adefense to adversarial perturbations against deep neural net-works[C]//2016 IEEE Symposium on Security and Privacy(SP).2016:582-597. [9]CARLINI N,WAGNER D.Towards evaluating the robustness of neural networks[C]//2017 IEEE Symposium on Security and Privacy(SP).2017:39-57. [10]DONG Y,LIAO F,PANG T,et al.Boosting adversarial attacks with momentum[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:9185-9193. [11]LIN J,SONG C,HE K,et al.Nesterov accelerated gradient and scale invariance for adversarial attacks[J].arXiv:1908.06281,2019. [12]PIERAZZI F,PENDLEBURY F,CORTELLAZZI J,et al.Intriguing properties of adversarial ml attacks in the problem space[C]//2020 IEEE Symposium on Security and Privacy(SP).2020:1332-1349. [13]LING X,WU L,ZHANG J,et al.Adversarial attacks againstWindows PE malware detection:A survey of the state-of-the-art[J].Computers & Security,2023,128:103134. [14]CHATTOPADHAY A,SARKAR A,HOWLADER P,et al.Grad-cam++:Generalized gradient-based visual explanations for deep convolutional networks[C]//2018 IEEE Winter Conference on Applications of Computer Vision(WACV).2018:839-847. [15]NATARAJ L,KARTHIKEYAN S,JACOB G,et al.Malware images:visualization and automatic classification[C]//Procee-dings of the 8th International Symposium on Visualization for Cyber Security.2011:1-7. [16]HAN K S,LIM J H,KANG B,et al.Malware analysis usingvisualized images and entropy graphs[J].International Journal of Information Security,2015,14:1-14. [17]MAKANDAR A,PATROT A.Malware class recognition using image processing techniques[C]//2017 International Conference on Data Management,Analytics and Innovation(ICDMAI).2017:76-80. [18]CUI Z,XUE F,CAI X,et al.Detection of malicious code va-riants based on deep learning[J].IEEE Transactions on Industrial Informatics,2018,14(7):3187-3196. [19]GIBERT D,MATEU C,PLANES J,et al.Using convolutional neural networks for classification of malware represented as images[J].Journal of Computer Virology and Hacking Techniques,2019,15:15-28. [20]LIU X,ZHANG J,LIN Y,et al.ATMPA:attacking machine learning-based malware visualization detection methods via adversarial examples[C]//Proceedings of the International Symposium on Quality of Service.2019:1-10. [21]CHEN J Y,ZOU J F,YUAN J K,et al.Black-box adversarial attack method towards malware detection [J].Computer Science,2021,48(5):60-67. [22]KHORMALI A,ABUSNAINA A,CHEN S,et al.COPYCAT:practical adversarial attacks on visualization-based malware detection[J].arXiv:1909.09735,2019. [23]ZHAN D,DUAN Y,HU Y,et al.AMGmal:Adaptive mask-guided adversarial attack against malware detection with minimal perturbation[J].Computers & Security,2023,127:103103. [24]ZHAN D,HU Y,LI W,et al.Towards robust CNN-based malware classifiers using adversarial examples generated based on two saliency similarities[J].Neural Computing and Applications,2023,35(23):17129-17146. [25]JIANG Z J,CHEN Y,XIONG Z M,et al.Adversarial Examples with Unlimited Amount of Additions[J].Journal of Frontiers of Computer Science and Technology,2024,18(2):526-537. [26]XIAO M,GUO C,SHEN G W,et al.Adversarial Example Remaining Availability and Functionality[J].Journal of Frontiers of Computer Science and Technology,2022,16(10):2286-2297. [27]LI K,GUO W,ZHANG F,et al.Adversarial malware generation method based on genetic algorithm[J].Computer Science,2023,50(7):325-331. [28]CHEN B,REN Z,YU C,et al.Adversarial examples for cnn-based malware detectors[J].IEEE Access,2019,7:54360-54371. [29]ZHOU B,KHOSLA A,LAPEDRIZA A,et al.Learning deep features for discriminative localization[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2921-2929. [30]SELVARAJU R R,COGSWELL M,DAS A,et al.Grad-cam:Visual explanations from deep networks via gradient-based localization[C]//Proceedings of the IEEE International Confe-rence on Computer Vision.2017:618-626. [31]KREUK F,BARAK A,AVIV-REUVEN S,et al.Deceiving end-to-end deep learning malware detectors using adversarial examples[J].arXiv:1802.04528,2018. [32]SUCIU O,COULL S E,JOHNS J.Exploring adversarial examples in malware detection[C]//2019 IEEE Security and Privacy Workshops(SPW).2019:8-14. [33]NOCEDAL J.Updating quasi-Newton matrices with limitedstorage[J].Mathematics of Computation,1980,35(151):773-782. [34]YANG L,CIPTADI A,LAZIUK I,et al.BODMAS:An open dataset for learning based temporal analysis of PE malware[C]//2021 IEEE Security and Privacy Workshops(SPW).2021:78-84. [35]HUANG G,LIU Z,VAN DER MAATEN L,et al.Densely con-nected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:4700-4708. [36]SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[J].arXiv:1409.1556,2014. [37]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [38]KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenetclassification with deep convolutional neural networks[J].Advances in Neural Information Processing Systems,2017,60(6):84-90. [39]WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612. [40]ZHANG R,ISOLA P,EFROS A A,et al.The unreasonable effectiveness of deep features as a perceptual metric[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:586-595. [41]HARANG R,RUDD E M.SOREL-20M:A large scale bench-mark dataset for malicious PE detection[J].arXiv:2012.07634,2020. |
[1] | LI Jianqiu, LIU Wanping, HUANG Dong, ZHANG Qiong. Multimodal Fusion Based Dynamic Malware Detection [J]. Computer Science, 2024, 51(11A): 240200098-7. |
[2] | GAO Zhen, CHEN Fucai, WANG Yawen, HE Weizhen. VPN Traffic Hijacking Defense Technology Based on Mimic Defense [J]. Computer Science, 2023, 50(11): 340-347. |
[3] | LI Kun, GUO Wei, ZHANG Fan, DU Jiayu, YANG Meiyue. Adversarial Malware Generation Method Based on Genetic Algorithm [J]. Computer Science, 2023, 50(7): 325-331. |
[4] | HOU Shang-wen, HUANG Jian-jun, LIANG Bin, YOU Wei, SHI Wen-chang. Defense Method Against Code Reuse Attack Based on Real-time Code Loading and Unloading [J]. Computer Science, 2022, 49(10): 279-284. |
[5] | CHEN Tao, SHU Hui, XIONG Xiao-bing. Study of Universal Shellcode Generation Technology [J]. Computer Science, 2021, 48(4): 288-294. |
[6] | ZHANG Lan, LAI Yao, YE Xiao-jun. Attention Mechanism Based Detection of Malware Call Sequences [J]. Computer Science, 2019, 46(12): 132-137. |
[7] | ZHANG Zong-mei, GUI Sheng-lin, REN Fei. Android Malware Detection Based on N-gram [J]. Computer Science, 2019, 46(2): 145-151. |
[8] | NIU Wei-na, ZHANG Xiao-song, YANG Guo-wu, ZHUO Zhong-liu, LU Jia-zhong. Modeling and Analysis of Botnet with Heterogeneous Infection Rate [J]. Computer Science, 2018, 45(7): 135-138. |
|