Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 241000164-7.doi: 10.11896/jsjkx.241000164
• Interdiscipline & Application • Previous Articles Next Articles
ZHANG Yuechao1, AN Guocheng2, SUN Chenkai2
CLC Number:
| [1]LI N,LIU J J,LAI X Y,et al.Ultra-short-term Multi-step Forecast of Photovoltaic Power Based on Time Series Neural Hierarchical Interpolation Model [J].Smart Power,2024,52(4):69-77. [2]MARIAM A,IMTIAZ A.Solar Power Generation ForecastingUsing Ensemble Approach Based on Deep Learning and Statistical Methods[J].Applied Computing and Informatics,2024,20(3/4):231-250. [3]WANG X G,ZHU J W,ZHANG A X.Identification Method of Voiceprint Identity Based on ARIMA Prediction of MFCC Features[J].Computer Science,2022,49(5):92-97. [4]ANDARA K,HYNDMANR J,BERGMEIR C.MSTL:a seasonaltrend decomposition algorithm for timeseries with multiple seasonal patterns [J].arXiv:2107.13462,2021. [5]ZENG Z H,LI C Y,LIAO Q.Anomaly Detection Algorithm for Multivariate Time Series with Missing Values [J].Computer Science,2024,51(7):108-115. [6]LI Y H,GUO H G,LIU P P,et al.A Cloud Platform LoadForecasting Method Based on Temporal Convolutional Networks [J].Computer Science,2023,50(7):254-260. [7]TENG C Y,DING Y C,ZHANG Y B,et al.Ultra-short-term Photovoltaic Power Prediction Based on VMD-Informer-BiLSTM Model [J].High Voltage Engineering,2023,49(7):2961-2971. [8]KONG F M,GAO L,LI P C,et al.EMD-LSTM-LB Frequency-Domain Time Series Forecasting Algorithm [J].Computer Engineering and Design,2023,44(10):3021-3030. [9]LI P C,ZHANG F,GAO L,et al.A novel model for chaoticcomplex time series with large of data forecasting[J].Knowledge-based Systems,2021,222:107009. [10]ZHAO B C,MA J J,CUI L,et al.Anomaly Detection for Photovoltaic Power Generation Based on the Improved VMD-XGBoost-BiLSTM Hybrid Model [J].Computer Engineering,2024,50(3):306-316. [11]ZHANG J L,LI Y,ZHU Q S,et al.Substation Equipment Malfunction Alarm Algorithm Based on Dual-domain Sparse Transformer[J].Computer Science,2024,51(5):62-69. [12]MARYAM Y,NARJES A,MEISAM F,et al.Deep learning-based multistep ahead wind speed and power generation forecasting using direct method[J].Energy Conversion and Management,2023,281:116760-116760. [13]NEHLER K J,SCHULTZE M.Missing Data Handling via EM and Multiple Imputation in Network Analysis using glasso and atan Regularization[J].Multivariate Behavioral Rsearch,2025,2025:1-23. [14]GEETA C.Handling Missing Data Through Artificial NeuralNetwork[J].Communications on Applied Nonlinear Analysis,2024,31(7s):677-684. [15]CHEN X D,LI X C,LIU B,et al.Biased Temporal Convolution Graph Network for Time Series Forecasting with Missing Va-lues[C]//International Conference on Learning Representations.2024 [16]LUO D H,WANG X.ModernTCN:A Modern Pure Convolution Structure for General Time Series Analysis[C]//International Conference on Learning Representations.2024 [17]LEVA S,NESPOLI A,PRETTO S,et al,Photovoltaic power andweather parameters[EB/OL].[2023-01-12].https://dx.doi.org/10.21227/42v0-jz14. [18]LIU Y,HU T G,ZHANG H R,et al.iTransformer:InvertedTransformers Are Effective for Time Series Forecasting[C]//International Conference on Learning Representations.2023. |
| [1] | GUAN Xin, YANG Xueyong, YANG Xiaolin, MENG Xiangfu. Tumor Mutation Prediction Model of Lung Adenocarcinoma Based on Pathological [J]. Computer Science, 2025, 52(6A): 240700010-8. |
| [2] | HAN Lin, WANG Yifan, LI Jianan, GAO Wei. Automatic Scheduling Search Optimization Method Based on TVM [J]. Computer Science, 2025, 52(3): 268-276. |
| [3] | NING Ting, MIAO De-zhuang, DONG Qi-wen, LU Xue-song. Wide and Deep Learning for Default Risk Prediction [J]. Computer Science, 2021, 48(5): 197-201. |
|
||