Computer Science ›› 2025, Vol. 52 ›› Issue (11A): 241200080-6.doi: 10.11896/jsjkx.241200080
• Network & Communication • Previous Articles Next Articles
QI Jianshe1, YANG Xiaohan2, ZHOU Dacheng2
CLC Number:
| [1]Welcome to Tor Metrics[EB/OL].(2023-05-30).https://metrics.torproject.org. [2]DINGLEDINE R,MURDOCH S J.Performance Improvements on Tor or,Why Tor is slow and what we’re going to do about it[EB/OL].http://www.torproject.org/press/presskit/2009-03-11-performance.pdf,2009:68. [3]ALSABAH M,GOLDBERG I.Performance and security im-provements for tor:A survey[J].ACM Computing Surveys(CSUR),2016,49(2):1-36. [4]BASYONI L,ERBAD A,ALSABAH M,et al.QuicTor:Enhancing tor for real-time communication using QUIC transport protocol[J].IEEE Access,2021,9:28769-28784. [5]BASYONI L,ERBAD A,ALSABAH M,et al.Empirical per-formance evaluation of QUIC protocol for Tor anonymity network[C]//2019 15th International Wireless Communications & Mobile Computing Conference(IWCMC).IEEE,2019:635-642. [6]HEIJLIGERS J.Tor over QUIC[Z].2021. [7]TRAP C H.Impact of replacing TCP by QUIC in Tor on website fingerprinting resistance[EB/OL].https://resolver.tudelft.nl/uuid:aae440ca-a787-4f61-8730-67a1d3cdd508. [8]KYLE H.Security analysis of Tor over QUIC.PhD Thesis.Massachusetts Institute of Technology[EB/OL].https://dspace.mit.edu/handle/1721.1/128590. [9]DINGLEDINE R,MATHEWSON N.Tor Protocol Specification[EB/OL].(28-05-2023).https://gitweb.torproject.org/torspec.git/tree/tor-spec.txt. [10]LANGLEY A,RIDDOCH A,WILK A,et al.The quic transport protocol:Design and internet-scale deployment[C]//Procee-dings of the Conference of the ACM Special Interest Group on Data Communication.2017:183-196. [11]WANG Z,ZHANG J,LIU Q,et al.Practical metrics for evaluating anonymous networks[C]//Science of Cyber Security:First International Conference,SciSec 2018,Beijing,China,Revised Selected Papers 1.Springer International Publishing,2018:3-18. [12]HOPPER N,VASSERMAN E Y,CHAN-TIN E.How muchanonymity does network latency leak?[J].ACM Transactions on Information and System Security(TISSEC),2010,13(2):1-28. [13]PFITZMANN A,HANSEN M.A terminology for talking about privacy by data minimization:Anonymity,unlinkability,undetectability,unobservability,pseudonymity,and identity management[EB/OL].https://www.researchgate.net/publication/234720523. [14]Robustness[OL].https://en.wikipedia.org/wiki/Robustness. [15]SHIRAZI F,DIAZ C,WRIGHT J.Towards measuring resili-ence in anonymous communication networks[C]//Proceedings of the 14th ACM Workshop on Privacy in the Electronic Society.2015:95-99. [16]PENG T,LECKIE C,RAMAMOHANARAO K.Survey of network-based defense mechanisms countering the DoS and DDoS problems[J].ACM Computing Surveys(CSUR),2007,39(1):3-es. [17]ABOOD O G,GUIRGUIS S K.A survey on cryptography algorithms[J].International Journal of Scientific and Research Publications,2018,8(7):495-516. [18]CHAO D,XU D,GAO F,et al.A Systematic Survey On Security in Anonymity Networks:Vulnerabilities,Attacks,Defenses,and Formalization[J].IEEE Communications Surveys & Tuto-rials,2024,26(3):1775-1829. [19]BASYONI L,FETAIS N,ERBAD A,et al.Traffic analysis attacks on Tor:A survey[C]//2020 IEEE International Confe-rence on Informatics,IoT,and Enabling Technologies(ICIoT).IEEE,2020:183-188. [20]W3Techs[EB/OL].https://w3techs.com/technologies/details/cehttp3. [21]SANDERS C.Practical packet analysis:Using Wireshark tosolve real-world network problems[M].No Starch Press,2017. [22]DINGLEDINE R,MATHEWSON N.Anonymity loves company:Usability and the network effect[C]//WEIS.2006. |
| [1] | WANG Huiqiang, LIN Yang, LYU Hongwu. Survey on Formal Modelling and Quantitative Analysis Methods for Complex Systems [J]. Computer Science, 2025, 52(9): 346-359. |
| [2] | YIN Shi, SHI Zhenyang, WU Menglin, CAI Jinyan, YU De. Deep Learning-based Kidney Segmentation in Ultrasound Imaging:Current Trends and Challenges [J]. Computer Science, 2025, 52(9): 16-24. |
| [3] | ZHAO Shengyu, PENG Jiaheng, WANG Wei, HUANG Fan. OpenRank Dynamics:Influence Evaluation and Dynamic Propagation Models for Open SourceEcosystems [J]. Computer Science, 2025, 52(8): 62-70. |
| [4] | KONG Yinling, WANG Zhongqing, WANG Hongling. Study on Opinion Summarization Incorporating Evaluation Object Information [J]. Computer Science, 2025, 52(7): 233-240. |
| [5] | WANG Weiwei, LE Yang, WANG Yankai. Sub-community Detection and Evaluation in Open Source Projects:An Example of Apache IoTDB [J]. Computer Science, 2025, 52(7): 26-36. |
| [6] | ZHAO Chanchan, WEI Xiaomin, SHI Bao, LYU Fei, LIU Libin, ZHANG Ziyang. Edge Computing Based Approach for Node Trust Evaluation in Blockchain Networks [J]. Computer Science, 2025, 52(6A): 240600153-8. |
| [7] | GAO Yiqin, LUO Zhiyu, WANG Yichao, LIN Xinhua. Performance Evaluation and Optimization of Operating System for Domestic Supercomputer [J]. Computer Science, 2025, 52(5): 11-24. |
| [8] | LIAO Qiucheng, ZHOU Yang, LIN Xinhua. Metrics and Tools for Evaluating the Deviation in Parallel Timing [J]. Computer Science, 2025, 52(5): 41-49. |
| [9] | ZHAO Chuan, HE Zhangzhao, WANG Hao, KONG Fanxing, ZHAO Shengnan, JING Shan. Lightweight Heterogeneous Secure Function Computing Acceleration Framework [J]. Computer Science, 2025, 52(4): 301-309. |
| [10] | ZHU Shucheng, HUO Hongying, WANG Weikang, LIU Ying, LIU Pengyuan. Automatic Optimization and Evaluation of Prompt Fairness Based on Large Language Model Itself [J]. Computer Science, 2025, 52(4): 240-248. |
| [11] | LIANG Binghao, ZHANG Chuangang, YUAN Mingming. Research on Cross-Evaluation Method of Large Model [J]. Computer Science, 2025, 52(11A): 241000129-7. |
| [12] | WANG Keke, BIAN Yue, YIN Yanyan. Research on Security Performance Evaluation and Verification of Video Surveillance NetworkBased on Variable Fuzzy Theory [J]. Computer Science, 2025, 52(11A): 241100095-6. |
| [13] | XIONG Zhuozhi, GU Zhouhong, FENG Hongwei, XIAO Yanghua. Subject Knowledge Evaluation Method for Language Models Based on Multiple ChoiceQuestions [J]. Computer Science, 2025, 52(10): 201-207. |
| [14] | ZHAO Jinshuang, HUANG Degen. Summary Faithfulness Evaluation Based on Data Augmentation and Two-stage Training [J]. Computer Science, 2025, 52(10): 266-274. |
| [15] | XIN Bo, DING Zhijun. Interpretable Credit Evaluation Model for Delayed Label Scenarios [J]. Computer Science, 2024, 51(8): 45-55. |
|
||