Computer Science ›› 2025, Vol. 52 ›› Issue (8): 62-70.doi: 10.11896/jsjkx.250300005
• Software Engineering • Previous Articles Next Articles
ZHAO Shengyu1, PENG Jiaheng2, WANG Wei2, HUANG Fan2
CLC Number:
[1]PU Q M,XI Z X,HUANG L R,et al.User influence evaluation algorithm based on GitHub[J].Journal of South-Central Minzu University(Natural Science Edition),2023,42(5):672-677. [2]OKONG'O W,NDIEGE J R A.Knowledge sharing in open-source software development communities:a review and synthesis[J].VINE Journal of Information and Knowledge Management Systems,2023,55(3):622-649. [3]SHI C,WANG R J,WANG X.A review of heterogeneous information network analysis and applications[J].Journal of Software,2022,33(2):598-621. [4]YOU L,PENG J,WANG W,et al.Data Driven Visualized Analysis:Visualizing Global Trends of GitHub Developers with Fine-Grained Geo-Details[C]//International Conference on Database Systems for Advanced Applications.2024:498-502. [5]KERMARREC A M,LE MERRER E,SERICOLA B,et al.Se-cond order centrality:Distributed assessment of nodes criticity in complex networks[J].Computer Communications,2011,34(5):619-628. [6]LI J,WILLETT P.ArticleRank:a PageRank-based alternativeto numbers of citations for analysing citation networks[C]//Aslib Proceedings.Emerald Group Publishing Limited,2009:605-618. [7]LI Y,LI C,CHEN W.Research on influence ranking of chinese movie heterogeneous network based on PageRank algorithm[C]//Web Information Systems and Applications:15th International Conference.Springer,2018:344-356. [8]PAGE L,BRIN S,MOTWANI R,et al.The pagerank citation ranking:Bring order to the web[C]//Proceedings of the 7th International World Wide Web Conference.1998. [9]ZHAO S,XIA X,FITZGERALD B,et al.OpenRank Leaderboard:Motivating Open Source Collaborations Through Social Network Evaluation in Alibaba[C]//Proceedings of the 46th International Conference on Software Engineering:Software Engineering in Practice.2024:346-357. [10]TANG Y,ZHAO S,XIA X,et al.HyperCRX:A Browser Extension for Insights into GitHub Projects and Developers[C]//Proceedings of the 32nd IEEE/ACM International Conference on Program Comprehension.2024:460-464. [11]HUANG W,XIA X,ZHOU A,et al.OSGraph:A Data Visualization Insight Platform for Open Source Community[C]//International Conference on Database Systems for Advanced Applications.Springer,2024:476-479. [12]HAN F Y,BI F L,ZHANG Y B,et al.OpenPerf:A data science benchmark system for sustainable development of open source ecosystem [J].Journal of Computers,2025,48(3):632-649. [13]WANG L,TIAN Y,DU J.Idea dynamics on social networks[J].Science China:Information Sciences,2018,48(1):3-23. [14]ZHONG E,FAN W,ZHU Y,et al.Modeling the dynamics ofcomposite social networks[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2013:937-945. [15]JAMALI M,LAKSHMANAN L.Heteromf:recommendation in heterogeneous information networks using context dependent factor models[C]//Proceedings of the 22nd International Conference on World Wide Web.2013:643-654. [16]LONG B,ZHANG Z,YU P S.Co-clustering by block value decomposition[C]//Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mi-ning.2005:635-640. [17]SUN Y,HAN J,YAN X,et al.Pathsim:Meta path-based top-k similarity search in heterogeneous information networks[J].Proceedings of the VLDB Endowment,2011,4(11):992-1003. [18]SHI C,PHILIP S Y.Heterogeneous information network analysis and applications[M].Cham:Springer,2017. [19]KONG X,CAO B,YU P S.Multi-label classification by mining label and instance correlations from heterogeneous information networks[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2013:614-622. [20]WANG R,SHI C,YU P S,et al.Integrating clustering andranking on hybrid heterogeneous information network[C]//Advances in Knowledge Discovery and Data Mining:17th Pacific-Asia Conference(PAKDD 2013).Berlin:Springer,2013:583-594. [21]LYU L,ZHANG Y C,YEUNG C H,et al.Leaders in social networks,the delicious case[J].PLoS One,2011,6(6):e21202. [22]WANG J,HUANG W,SHENGYU Z,et al.OpenRank contribution evaluation method and empirical study in open-source course[J].Journal of East China Normal University(Natural Science),2024,2024(5):11. [23]CASTELLANO C,FORTUNATO S,LORETO V.Statisticalphysics of social dynamics[J].Reviews of Modern Physics,2009,81(2):591-646. [24]SCHNEIDER J J,HIRTREITER C.The impact of election results on the member numbers of the large parties in Bavaria and Germany[J].International Journal of Modern Physics C,2005,16(8):1165-1215. [25]FRASCA P,ISHII H,RAVAZZI C,et al.Distributed rando-mized algorithms for opinion formation,centrality computation and power systems estimation:A tutorial overview[J].Euro-pean Journal of Control,2015,24:2-13. [26]DEGROOT M H.Reaching a consensus[J].Journal of theAmerican Statistical association,1974,69(345):118-121. [27]QUATTROCIOCCHI W,CALDARELLI G,SCALA A.Opi-nion dynamics on interacting networks:media competition and social influence[J].Scientific Reports,2014,4(1):4938. [28]RICHARDSON M,DOMINGOS P.Mining knowledge-sharingsites for viral marketing[C]//Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2002:61-70. [29]KEMPE D,KLEINBERG J,TARDOS É.Maximizing the spread of influence through a social network[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2003:137-146. [30]SAITO K,NAKANO R,KIMURA M.Prediction of information diffusion probabilities for independent cascade model[C]//International Conference on Knowledge-based and Intelligent Information and Engineering Systems.Berlin:Springer,2008:67-75. [31]CHEN W,YUAN Y,ZHANG L.Scalable influence maximization in social networks under the linear threshold model[C]//2010 IEEE International Conference on Data Mining.IEEE,2010:88-97. [32]BORGS C,BRAUTBAR M,CHAYES J,et al.Maximizing social influence in nearly optimal time[C]//Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms.Society for Industrial and Applied Mathematics,2014:946-957. [33]TANG Y,XIAO X,SHI Y.Influence maximization:Near-optimal time complexity meets practical efficiency[C]//Proceedings of the 2014 ACM SIGMOD International Conference on Ma-nagement of Data.2014:75-86. [34]TANG Y,SHI Y,XIAO X.Influence maximization in near-linear time:A martingale approach[C]//Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data.2015:1539-1554. [35]GOMEZ-RODRIGUEZ M,LESKOVEC J,KRAUSE A.Inferring networks of diffusion and influence[J].ACM Transactions on Knowledge Discovery from Data,2012,5(4):1-37. [36]MYERS S,LESKOVEC J.On the convexity of latent social network inference[C]//Proceedings of the 24th International Conference on Neural Information Processing Systems.2010:1741-1749. [37]ZHANG S,SUN J,LIN W,et al.Information Diffusion Meets Invitation Mechanism[C]//Proceedings of the ACM on Web Conference 2024.2024:383-392. [38]HUANG K,GAO R,CAUTIS B,et al.Scalable Continuous-time Diffusion Framework for Network Inference and Influence Estimation[C]//Proceedings of the ACM on Web Conference 2024.2024:2660-2671. |
[1] | YANG Zhenzhen, WANG Dongtao, YANG Yongpeng, HUA Renyu. Multi-embedding Fusion Based on top-N Recommendation [J]. Computer Science, 2024, 51(7): 140-145. |
[2] | CHEN Wei, ZHOU Lihua, WANG Yafeng, WANG Lizhen, CHEN Hongmei. Community Search Based on Disentangled Graph Neural Network in Heterogeneous Information Networks [J]. Computer Science, 2024, 51(3): 90-101. |
[3] | XIA Xiaoya, ZHAO Shengyu, HAN Fanyu, BI Fenglin, WANG Wei, ZHOU Xuan, ZHOU Aoying. Data Mining and Information Service for Open Collaboration Digital Ecosystem [J]. Computer Science, 2024, 51(10): 187-195. |
[4] | DU Ming, YANG Wen, ZHOU Junfeng. Maximum Influential Community Search in Heterogeneous Information Network [J]. Computer Science, 2023, 50(8): 16-26. |
[5] | WANG Huiyan, YU Minghe, YU Ge. Deep Learning-based Heterogeneous Information Network Representation:A Survey [J]. Computer Science, 2023, 50(5): 103-114. |
[6] | ZHOU Mingqiang, DAI Kailang, WU Quanwang, ZHU Qingsheng. Attention-aware Multi-channel Graph Convolutional Rating Prediction Model for Heterogeneous Information Networks [J]. Computer Science, 2023, 50(3): 129-138. |
[7] | LIU Hualing, ZHANG Guoxiang, WANG Liuyue, LIANG Huabi. Study on Credit Anti-fraud Based on Heterogeneous Information Network [J]. Computer Science, 2023, 50(11A): 221100173-9. |
[8] | LYU Xiao-feng, ZHAO Shu-liang, GAO Heng-da, WU Yong-liang, ZHANG Bao-qi. Short Texts Feautre Enrichment Method Based on Heterogeneous Information Network [J]. Computer Science, 2022, 49(9): 92-100. |
[9] | DU Hang-yuan, LI Duo, WANG Wen-jian. Method for Abnormal Users Detection Oriented to E-commerce Network [J]. Computer Science, 2022, 49(7): 170-178. |
[10] | TANG Qi-you, ZHANG Feng-li, WANG Rui-jin, WANG Xue-ting, ZHOU Zhi-yuan, HAN Ying-jun. Method of Attributed Heterogeneous Network Embedding with Multiple Features [J]. Computer Science, 2022, 49(12): 146-154. |
[11] | JIANG Zong-li, FAN Ke, ZHANG Jin-li. Generative Adversarial Network and Meta-path Based Heterogeneous Network Representation Learning [J]. Computer Science, 2022, 49(1): 133-139. |
[12] | ZHENG Su-su, GUAN Dong-hai, YUAN Wei-wei. Heterogeneous Information Network Embedding with Incomplete Multi-view Fusion [J]. Computer Science, 2021, 48(9): 68-76. |
[13] | ZHAO Jin-long, ZHAO Zhong-ying. Recommendation Algorithm Based on Heterogeneous Information Network Embedding and Attention Neural Network [J]. Computer Science, 2021, 48(8): 72-79. |
[14] | GAO Chuang, LI Jian-hua, JI Xiu-yi, ZHU Cheng-long, LI Shi-liang, LI Hong-lin. Drug Target Interaction Prediction Method Based on Graph Convolutional Neural Network [J]. Computer Science, 2021, 48(10): 127-134. |
[15] | LIU Jun-liang, LI Xiao-guang. Techniques for Recommendation System:A Survey [J]. Computer Science, 2020, 47(7): 47-55. |
|