Computer Science ›› 2025, Vol. 52 ›› Issue (2): 380-387.doi: 10.11896/jsjkx.231200168
• Information Security • Previous Articles
YAN Tingju, CAO Yan, WANG Yijing
CLC Number:
[1]MELAMED T.An active man-in-the-middle attack on bluetooth smart devices[J].Safety and Security Studies,2018,8(2):200-211. [2]OLIFF W,FILIPPOUPOLITIS A,LOUKAS G.Evaluating the impact of malicious spoofing attacks on Bluetooth low energy based occupancy detection systems[C]//2017 IEEE 15th International Conference on Software Engineering Research,Management and Applications(SERA).IEEE,2017:379-385. [3]WU J,NAN Y,KUMAR V,et al.{BLESA}:Spoofing attacksagainst reconnections in bluetooth low energy[C]//14th USENIX Workshop on Offensive Technologies(WOOT 20).2020. [4]XU W,TRAPPE W,ZHANG Y,et al.The feasibility of launching and detecting jamming attacks in wireless networks[C]//Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing.2005:46-57. [5]YURDAGUL M A,SENCAR H T.BLEKeeper:Response Time Behavior Based Man-In-The-Middle Attack Detection[C]//2021 IEEE Security and Privacy Workshops(SPW).IEEE,2021:214-220. [6]WU J,NAN Y,KUMAR V,et al.{BlueShield}:Detecting spoofing attacks in bluetooth low energy networks[C]//23rd International Symposium on Research in Attacks,Intrusions and Defenses(RAID 2020).2020:397-411. [7]ZHOU X,HU A,LI G,et al.A robust radio-frequency fingerprint extractionscheme for practical device recognition[J].IEEE Internet of Things Journal,2021,8(14):11276-11289. [8]SHEN G,ZHANG J,MARSHALL A,et al.Towards scalable and channel-robust radio frequency fingerprint identification for LoRa[J].IEEE Transactions on Information Forensics and Security,2022,17:774-787. [9]ZHANG J,SHEN G,SAAD W,et al.Radio Frequency Fingerprint Identification for Device Authentication in the Internet of Things[J].IEEE Communications Magazine,2023,61(10):110-115. [10]TIAN Q,LIN Y,GUO X,et al.New security mechanisms ofhigh-reliability IoT communication based on radio frequency fingerprint[J].IEEE Internet of Things Journal,2019,6(5):7980-7987. [11]NILSSON D,YAN W.Identifying Bluetooth Low Energy Devices[C]//Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems.2021:375-376. [12]NILSSON D.Identifying Bluetooth Low Energy Devices viaPhysical-Layer Hardware Impairments[J/OL].https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1648267&dswid=-1696. [13]TU Y,ZHANG Z,LI Y,et al.Research on the Internet ofThings device recognition based on RF-fingerprinting[J].IEEE Access,2019,7:37426-37431. [14]ZHANG X,HUANG Y,TIAN Y,et al.Noise-like Features Assisted GNSS Spoofing Detection Based on Convolutional Autoencoder[J].IEEE Sensors Journal,2023,23(20):25473-25486. [15]QI L,YANG Y,ZHOU X,et al.Fast anomaly identificationbased on multiaspect data streams for intelligent intrusion detection toward secure industry 4.0[J].IEEE Transactions on Industrial Informatics,2021,18(9):6503-6511. [16]HWANG C,LEE T.E-SFD:Explainable sensor fault detection in the ICS anomaly detection system[J].IEEE Access,2021,9:140470-140486. [17]SARMADI H,KARAMODIN A.A novel anomaly detectionmethod based on adaptive Mahalanobis-squared distance and one-class kNNrule for structural health monitoring under environmental effects[J].Mechanical Systems and Signal Proces-sing,2020,140:106495. [18]XU H,PANG G,WANG Y,et al.Deep isolation forest for anomaly detection[C]//IEEE Transactions on Knowledge and Data Engineering.2023:1-14. [19]LI X,ZHANG H,MIAO Y,et al.Can bus messages abnormal detection using improved svdd in internet of vehicles[J].IEEE Internet of Things Journal,2021,9(5):3359-3371. [20]CHALAPATHY R,MENON A K,CHAWLA S.Anomaly detection using one-class neural networks[J].arXiv:1802.06360,2018. [21]RUFF L,VANDERMEULEN R,GOERNITZ N,et al.Deepone-classclassification[C]//International Conference on Machine Learning.PMLR,2018:4393-4402. [22]OZA P,PATEL V M.One-class convolutional neural network[J].IEEE Signal Processing Letters,2018,26(2):277-281. [23]ERFANI M,SHOELEH F,GHORBANI A A.Financial frauddetection using deep support vector data description[C]//2020 IEEE International Conference on Big Data(Big Data).IEEE,2020:2274-2282. [24]CHEN X,CAO C,MAI J.Network anomaly detection based on deep support vector data description[C]//2020 5th IEEE International Conference on Big Data Analytics(ICBDA).IEEE,2020:251-255. [25]Konstantin Tcholokachvili,Damien Cauquil.GitHub - DigitalSecurity/btlejuice:BtleJuice Bluetooth Smart(LE) Man-in-the-Middle framework[EB/OL].[2023-12-22].https://github.com/DigitalSecurity/btlejuice. [26]BINBUSAYYIS A,VAIYAPURI T.Unsupervised deep lear-ning approach for network intrusion detection combining convolutional autoencoder and one-class SVM[J].Applied Intelligence,2021,51(10):7094-7108. [27]YANG J,YANG X,ZHANG Z.A High-dimensional Anomaly Detection Algorithm Based on IForest with Autoencoder[C]//2022 4th International Conference on Data-driven Optimization of Complex Systems(DOCS).IEEE,2022:1-5. |
[1] | YANG Zhenyu, JI Xiaofeng, MA Wubin, WU Yahui. Study on Trajectory Prediction Model Algorithm of Missing Submersible Based on DifferentialEquation [J]. Computer Science, 2025, 52(6A): 240900071-9. |
[2] | LIU Chengming, LI Haixia, LI Shaochuan, LI Yinghao. Ensemble Learning Model for Stock Manipulation Detection Based on Multi-scale Data [J]. Computer Science, 2025, 52(6A): 240700108-8. |
[3] | YIN Wencui, XIE Ping, YE Chengxu, HAN Jiaxin, XIA Xing. Anomaly Detection of Multi-variable Time Series Data Based on Variational Graph Auto-encoders [J]. Computer Science, 2025, 52(6A): 240700124-8. |
[4] | PIAO Mingjie, ZHANG Dongdong, LU Hu, LI Rupeng, GE Xiaoli. Study on Multi-agent Supply Chain Inventory Management Method Based on Improved Transformer [J]. Computer Science, 2025, 52(6A): 240500054-10. |
[5] | HUANG Ao, LI Min, ZENG Xiangguang, PAN Yunwei, ZHANG Jiaheng, PENG Bei. Adaptive Hybrid Genetic Algorithm Based on PPO for Solving Traveling Salesman Problem [J]. Computer Science, 2025, 52(6A): 240600096-6. |
[6] | LEI Shuai, QIU Mingxin, LIU Xianhui, ZHANG Yingyao. Image Classification Model for Waste Household Appliance Recycling Based on Multi-scaleDepthwise Separable ResNet [J]. Computer Science, 2025, 52(6A): 240500057-7. |
[7] | BAO Shenghong, YAO Youjian, LI Xiaoya, CHEN Wen. Integrated PU Learning Method PUEVD and Its Application in Software Source CodeVulnerability Detection [J]. Computer Science, 2025, 52(6A): 241100144-9. |
[8] | LIU Runjun, XIAO Fengjun, HU Weitong, WANG Xu. Reversible Data Hiding in Fully Encrypted Images Based on Pixel Interval Partitioning andPrediction Recovery [J]. Computer Science, 2025, 52(6A): 240900030-8. |
[9] | LI Deqiang, REN Xinyi, XU Jia. Time-constrained Mobile Charging Scheduling for Heterogeneous Sensing in Wireless Rechargeable Sensor Networks [J]. Computer Science, 2025, 52(6): 355-364. |
[10] | LIAO Sirui, HUANG Feihu, ZHAN Pengxiang, PENG Jian, ZHANG Linghao. DCDAD:Differentiated Context Dependency for Time Series Anomaly Detection Method [J]. Computer Science, 2025, 52(6): 106-117. |
[11] | WANG Panxiang, CUI Yunhe, SHEN Guowei, GUO Chun, CHEN Yi, QIAN Qing. EvoTrace:A Lightweight In-band Network Telemetry Method Based on Nonlinear Embedding and Batch Processing [J]. Computer Science, 2025, 52(5): 291-298. |
[12] | TAN Shiyi, WANG Huaqun. Remote Dynamic Data Integrity Checking Scheme for Multi-cloud and Multi-replica [J]. Computer Science, 2025, 52(5): 345-356. |
[13] | ZHENG Xu, HUANG Xiangjie, YANG Yang. Reversible Facial Privacy Protection Method Based on “Invisible Masks” [J]. Computer Science, 2025, 52(5): 384-391. |
[14] | DAI Hanwen, CHEN Changbo. Accelerating Batched Matrix Multiplication for Variable Small Sizes Based on TVM andApplications [J]. Computer Science, 2025, 52(5): 25-40. |
[15] | PANG Mingyi, WEI Xianglin, ZHANG Yunxiang, WANG Bin, ZHUANG Jianjun. Efficient Adaptive CNN Accelerator for Resource-limited Chips [J]. Computer Science, 2025, 52(4): 94-100. |
|