Computer Science ›› 2025, Vol. 52 ›› Issue (4): 94-100.doi: 10.11896/jsjkx.241000099
• Smart Embedded Systems • Previous Articles Next Articles
PANG Mingyi1, WEI Xianglin2, ZHANG Yunxiang2, WANG Bin2, ZHUANG Jianjun1
CLC Number:
[1]CHEN X,XIE L X,WU J,et al.Cyclic CNN:Image Classification With Multiscale and Multilocation Contexts [J].IEEE Internet of Things Journal,2021,8:7466-7475. [2]HUANG L,CHEN C,YUN J T,et al.Multi-Scale Feature Fusion Convolutional Neural Network for Indoor Small Target Detection [J].Frontiers in Neurorobotics,2022,16:881021. [3]HEMA C R,MÁRQUEZ F P G.Emotional speech Recognition using CNN and Deep learning techniques [J].Applied Acoustics,2023,211:109492. [4]JANG B,KIM M,HARERIMANA G,et al.Bi-LSTM Model to Increase Accuracy in Text Classification:Combining Word2vec CNN and Attention Mechanism [J].Applied Sciences,2020,10:5814. [5]SYED R T,MARKO S,ULBRICHT M,et al.Towards Reconfigurable CNN Accelerator for FPGA Implementation [J].IEEE Transactions on Circuits and Systems II:Express Briefs,2023,70:1249-1253. [6]BJERGE K,SCHOUGAARD J H,LARSEN D E.A scalableand efficient convolutional neural network accelerator using HLS for a system-on-chip design [J].Microprocess and Micro-systems,2021,87:104363. [7]ZHANG Z C,MAHMUD M A,KOUZANI A Z,et al.FitNN:A Low-Resource FPGA-Based CNN Accelerator for Drones [J].IEEE Internet of Things Journal,2022,9:21357-21369. [8]LI,S Z,WANG Q,JIANG J F,et al.An Efficient CNN Accelerator Using Inter-Frame Data Reuse of Videos on FPGAs [J].IEEE Transactions on Very Large Scale Integration(VLSI) Systems,2022,30:1587-1600. [9]YAN S,LIU Z,WANG Y,et al.An FPGA-based MobileNet Accelerator Considering Network Structure Characteristics[C]//31st International Conference on Field-Programmable Logic and Applications(FPL).2021:17-23. [10]WANG B,WEI X L,WANG C,et al.Adaptive design and implementation of automatic modulation recognition accelerator [J].Journal of Ambient Intelligence and Humanized Computing,2024,15:1-17. [11]BAO C,XIE T,FENG W B,et al.A Power-Efficient Optimizing Framework FPGA Accelerator Based on Winograd for YOLO [J].IEEE Access,2020,8:94307-94317. [12]LECUN Y,BOTTOU B,BENGIO Y,et al.Gradient-basedlearning applied to document recognition [C]//Proceedings of the IEEE.1998:2278-2324. [13]SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-ScaleImage Recognition [J].arXiv:1409.1556,2014. [14]RIAZATI M,DANESHTALAB M,SJODIN M,et al.Au-toDeepHLS:Deep Neural Network High-level Synthesis using fixed-point precision [C]//2022 IEEE 4th International Conference on Artificial Intelligence Circuits and Systems(AICAS).2022:122-125. [15]NANE R,SIMA V M,PILATO C M,et al.A Survey and Evaluation of FPGA High-Level Synthesis Tools [J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2016,35:1591-1604. [16]CHEN Y H,KRISHNA T,EMER J S,et al.Eyeriss:An energy efficient reconfigurable accelerator for deep convolutional neural networks [J].IEEE Solid-State Circuits,2017,52:127-138. [17]BELABED T,SILVA V R,QUENON A,et al.A Novel Automate Python Edge-to-Edge:From Automated Generation on Cloud to User Application Deployment on Edge of Deep Neural Networks for Low Power IoT Systems FPGA-Based Acceleration [J].Sensors,2021,21:6050. [18]MOUSOULIOTIS P G,PETROU L P.CNN-Grinder:From Algorithmic to High-Level Synthesis descriptions of CNNs for Low-end-low-cost FPGA SoCs [J].Microprocessors and Micro-systems,2020,73:102990. [19]VENIERIS S I,BOUGANIS C.fpgaConvNet:A Framework for Mapping Convolutional Neural Networks on FPGAs [C]//2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines(FCCM).2016:40-47. [20]RIVERA-ACOSTA M,ORTEGA-CISNEROS S,RIVER A.Automatic Tool for Fast Generation of Custom Convolutional Neural Networks Accelerators for FPGA [J].Electronics,2019,8:641. [21]MAZOUZ A,BRIDEGS C P.Automated Offline Design-Space Exploration and Online Design Reconfiguration for CNNs [C]//2020 IEEE Conference on Evolving and Adaptive Intelligent Systems(EAIS).2020:1-9. [22]WANG F,SHEN M,LU Y,et al.TensorMap:A Deep RL-Based Tensor Mapping Framework for Spatial Accelerators [J].IEEE Transactions on Computers,2024,73:1899-1912. [23]ANDRULIS T,EMER J S,SZE V.CiMLoop:A Flexible,Accurate,and Fast Compute-In-Memory Modeling Tool [C]//2024 IEEE International Symposium on Performance Analysis of Systems and Software(ISPASS).2024:10-23. [24]WU X,WANG M,LIN J,et al.Amoeba:An Efficient and Flexible FPGA-Based Accelerator for Arbitrary-Kernel CNNs [J].IEEE Transactions on Very Large Scale Integration(VLSI) Systems,2024,32:1086-1099. [25]JIA X,ZHANG Y,LIU G,et al.XVDPU:A High Performance CNN Accelerator on the Versal Platform Powered by the AI Engine [C]//2022 32nd International Conference on Field-Programmable Logic and Applications(FPL).2022:1-9. [26]NAG S,DATTA G,KUNDU S,et al.ViTA:A Vision Transformer Inference Accelerator for Edge Applications [C]//2023 IEEE International Symposium on Circuits and Systems(ISCAS).2023:1-5. [27]XU Y,LUO J,SUN W.Flare:An FPGA-Based Full Precision Low Power CNN Accelerator with Reconfigurable Structure [J].Sensors,2024,24:2239. [28]CHEN T Q,LI M,LI Y,et al.MXNet:A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed Systems [J].arXiv:1512.01274,2015. [29]WANG E,DAVISJ J,CHEUNG P Y.A PYNQ-Based Framework for Rapid CNN Prototyping [C]//2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines(FCCM).2018:223-223. [30]CHEN S H,WU J M,PENG K J et al.Design and Implementation of Convolutional Neural Network Accelerator Based on ZYNQ Platform [J].Chinese Automation and Information Engineering,2024,45(1):30-34. [31]WANG Y L,XIE K L,CHEN S Y,et al.A universal design on hardware acceleration of convolutional neural networks [J].Chinese Computer Science Engineering,2023,45(4):577-581. |
[1] | WEI Xiaohui, GUAN Zeyu, WANG Chenyang, YUE Hengshan, WU Qi. Hardware-Software Co-design Fault-tolerant Strategies for Systolic Array Accelerators [J]. Computer Science, 2025, 52(5): 91-100. |
[2] | ZHAO Chuan, HE Zhangzhao, WANG Hao, KONG Fanxing, ZHAO Shengnan, JING Shan. Lightweight Heterogeneous Secure Function Computing Acceleration Framework [J]. Computer Science, 2025, 52(4): 301-309. |
[3] | XIONG Qibing, MIAO Qiguang, YANG Tian, YUAN Benzheng, FEI Yangyang. Malicious Code Detection Method Based on Hybrid Quantum Convolutional Neural Network [J]. Computer Science, 2025, 52(3): 385-390. |
[4] | HUANG Rui, XU Ji. Text Classification Based on Invariant Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230900018-5. |
[5] | WEI Niannian, HAN Shuguang. New Solution for Traveling Salesman Problem Based on Graph Convolution and AttentionNeural Network [J]. Computer Science, 2024, 51(6A): 230700222-8. |
[6] | WU Yibo, HAO Yingguang, WANG Hongyu. Rice Defect Segmentation Based on Dual-stream Convolutional Neural Networks [J]. Computer Science, 2024, 51(6A): 230600107-8. |
[7] | SUN Yang, DING Jianwei, ZHANG Qi, WEI Huiwen, TIAN Bowen. Study on Super-resolution Image Reconstruction Using Residual Feature Aggregation NetworkBased on Attention Mechanism [J]. Computer Science, 2024, 51(6A): 230600039-6. |
[8] | YUAN Zhen, LIU Jinfeng. Denoising Autoencoders Based on Lossy Compress Coding [J]. Computer Science, 2024, 51(6A): 230400172-7. |
[9] | DAI Yongdong, JIN Yang, DAI Yufan, FU Jing, WANG Maofei, LIU Xi. Study on Intelligent Defect Recognition Algorithm of Aerial Insulator Image [J]. Computer Science, 2024, 51(6A): 230700172-5. |
[10] | LYU Yiming, WANG Jiyang. Iron Ore Image Classification Method Based on Improved Efficientnetv2 [J]. Computer Science, 2024, 51(6A): 230600212-6. |
[11] | ZHANG Huazhong, PAN Yuekai, TU Xiaoguang, LIU Jianhua, XU Luopeng, ZHOU Chao. Facial Expression Recognition Integrating 3D Facial Dynamic Information and Optical Flow Information [J]. Computer Science, 2024, 51(6A): 230700210-7. |
[12] | LIU Hui, JI Ke, CHEN Zhenxiang, SUN Runyuan, MA Kun, WU Jun. Malicious Attack Detection in Recommendation Systems Combining Graph Convolutional Neural Networks and Ensemble Methods [J]. Computer Science, 2024, 51(6A): 230700003-9. |
[13] | ZHAO Tong, SHA Chaofeng. Revisiting Test Sample Selection for CNN Under Model Calibration [J]. Computer Science, 2024, 51(6): 34-43. |
[14] | ZHANG Liying, SUN Haihang, SUN Yufa , SHI Bingbo. Review of Node Classification Methods Based on Graph Convolutional Neural Networks [J]. Computer Science, 2024, 51(4): 95-105. |
[15] | WANG Ruiping, WU Shihong, ZHANG Meihang, WANG Xiaoping. Review of Vision-based Neural Network 3D Dynamic Gesture Recognition Methods [J]. Computer Science, 2024, 51(4): 193-208. |
|