Computer Science ›› 2025, Vol. 52 ›› Issue (4): 85-93.doi: 10.11896/jsjkx.241000097
• Smart Embedded Systems • Previous Articles Next Articles
LI Zhoucheng, ZHANG Yi, SUN Jin
CLC Number:
[1]ZHOU Z,CHEN X,LI E,et al.Edge intelligence:Paving the last mile of artificial intelligence with edge computing[J].Proceedings of the IEEE,2019,107(8):1738-1762. [2]DENG S,ZHAO H,FANG W,et al.Edge intelligence:The confluence of edge computing and artificial intelligence[J].IEEE Internet of Things Journal,2020,7(8):7457-7469. [3]WANG X,HAN Y,WANG C,et al.In-edge AI:Intelligentizing mobile edge computing,caching and communication by federated learning[J].IEEE Network,2019,33(5):156-165. [4]SHUVO M M H,ISLAM S K,CHENG J,et al.Efficient acceleration of deep learning inference on resource-constrained edge devices:A review[J].Proceedings of the IEEE,2022,111(1):42-91. [5]CUI W,ZHAO H,CHEN Q,et al.DVABatch:Diversity-aware multi-entry multi-exit batching for efficient processing of DNN services on GPUs[C]//USENIX Annual Technical Conference.USENIX,2022:183-198. [6]DONG F,WANG H,SHEN D,et al.Multi-exit DNN inference acceleration based on multi-dimensional optimization for edge intelligence[J].IEEE Transactions on Mobile Computing,2022,22(9):5389-5405. [7]ZHANG S,CUI W,CHEN Q,et al.PAME:Precision-awaremulti-exit DNN serving for reducing latencies of batched inferences[C]//ACM International Conference on Supercomputing.ACM,2022:1-12. [8]KAUL S,YATES R,GRUTESER M.Real-time status:Howoften should one update?[C]//International Conference on Computer Communications.IEEE,2012:2731-2735. [9]XU C,XU Q,WANG J,et al.AoI-centric task scheduling for autonomous driving systems[C]//International Conference on Computer Communications.IEEE,2022:1019-1028. [10]SORKHOH I,ASSI C,EBRAHIMI D,et al.Optimizing infor-mation freshness for MEC-enabled cooperative autonomous driving[J].IEEE Transactions on Intelligent Transportation Systems,2021,23(8):13127-13140. [11]MA M,WANG Z,GUO S,et al.Cloud-edge framework for AoI-efficient data processing in multi-UAV-assisted sensor networks[J].IEEE Internet of Things Journal,2024,11(14):25251-25267. [12]KADOTA I,SINHA A,MODIANO E.Scheduling algorithmsfor optimizing age of information in wireless networks with throughput constraints[J].IEEE/ACM Transactions on Networking,2019,27(4):1359-1372. [13]ZHANG J,XIN W,LV D,et al.Multi-exit DNN inference acceleration for intelligent terminal with heterogeneous processors[J].Sustainable Computing:Informatics and Systems,2023,40:100906. [14]KAYA Y,HONG S,DUMITRAS T.Shallow-deep networks:Understanding and mitigating network overthinking[C]//International Conference on Machine Learning.ACM,2019:3301-3310. [15]LASKARIDIS S,VENIERIS S I,ALMEIDA M,et al.SPINN:Synergistic progressive inference of neural networks over device and cloud[C]//International Conference on Mobile Computing and Networking.ACM,2020:1-15. [16]JU W,BAO W,YUAN D,et al.Learning early exit for deepneural network inference on mobile devices through multi-armed bandits[C]//International Symposium on Cluster,Cloud and Internet Computing.IEEE/ACM,2021:11-20. [17]JU W,BAO W,GE L,et al.Dynamic early exit scheduling for deep neural network inference through contextual bandits[C]//International Conference on Information & Knowledge Management.ACM,2021:823-832. [18]WANG X,NING Z,GUO S,et al.Minimizing the age-of-critical-information:An imitation learning-based scheduling approach under partial observations[J].IEEE Transactions on Mobile Computing,2021,21(9):3225-3238. [19]LI C,LIU Q,LI S,et al.Scheduling with age of information guarantee[J].IEEE/ACM Transactions on Networking,2022,30(5):2046-2059. [20]LI C,LI S,LIU Q,et al.Eywa:A general approach for scheduler design in AoI optimization [C]//International Conference on Computer Communications.2023:1-9. [21]LIN L,JU L,XUE C J,et al.Work or sleep:Freshness-aware energy scheduling for wireless powered communication networks with interference consideration[C]//Design Automation Conference.ACM/IEEE,2023:1-6. [22]YANG X S,DEB S.Cuckoo search via Lévy flights[C]//World Congress on Nature & Biologically Inspired Computing.IEEE,2009:210-214. [23]VISWANATHAN G M,AFANASYEV V,BULDYREV S V,et al.Lévy flights in random searches[J].Physica A:Statistical Mechanics and its Applications,2000,282(1/2):1-12. [24]MANTEGNA R N.Fast,accurate algorithm for numerical simulation of Lévy stable stochastic processes[J].Physical Review E,1994,49(5):4677. [25]GREFENSTETTE J J.Optimization of control parameters forgenetic algorithms[J].IEEE Transactions on Systems Man & Cybernetics,1986,16(1):122-128. [26]MO Y B,MA Y Z,ZHENG Q Y.Optimal choice of parameters for firefly algorithm[C]//International Conference on Digital Manufacturing & Automation.2013:887-892. [27]WANG D F,MENG L.Performance analysis and parameter selection of PSO algorithms[J].ACTA AUTOMATICA SINICA,2016,42(10):1552-1561. [28]STAHLEL,WOLD S.Analysis of variance(ANOVA)[J].Chemometrics and Intelligent Laboratory Systems,1989,6(4):259-272. |
[1] | XU Xiaohua, ZHOU Zhangbing, HU Zhongxu, LIN Shixun, YU Zhenjie. Lightweight Deep Neural Network Models for Edge Intelligence:A Survey [J]. Computer Science, 2024, 51(7): 257-271. |
[2] | LI Le, LIU Meifang, CHEN Rong, WEI Siyu. Study on Collaborative Control Method of Vehicle Platooning Based on Edge Intelligence [J]. Computer Science, 2024, 51(6): 384-390. |
[3] | LU Yanfeng, WU Tao, LIU Chunsheng, YAN Kang, QU Yuben. Survey of UAV-assisted Energy-Efficient Edge Federated Learning [J]. Computer Science, 2024, 51(4): 270-279. |
[4] | YANG Da, LUO Liang, ZHENG Long. New Global Optimization Algorithm:Carbon Cycle Algorithm [J]. Computer Science, 2023, 50(6A): 220300131-7. |
[5] | Yifei ZOU, Senmao QI, Cong'an XU, Dongxiao YU. Distributed Weighted Data Aggregation Algorithm in End-to-Edge Communication Networks Based on Multi-armed Bandit [J]. Computer Science, 2023, 50(2): 13-22. |
[6] | WANG Xiangwei, HAN Rui, Chi Harold LIU. Hierarchical Memory Pool Based Edge Semi-supervised Continual Learning Method [J]. Computer Science, 2023, 50(2): 23-31. |
[7] | LI Xiaohuan, CHEN Bitao, KANG Jiawen, YE Jin. Coalition Game-assisted Joint Resource Optimization for Digital Twin-assisted Edge Intelligence [J]. Computer Science, 2023, 50(2): 42-49. |
[8] | LIU Xing-guang, ZHOU Li, LIU Yan, ZHANG Xiao-ying, TAN Xiang, WEI Ji-bo. Construction and Distribution Method of REM Based on Edge Intelligence [J]. Computer Science, 2022, 49(9): 236-241. |
[9] | HU Zhao-xia, HU Hai-zhou, JIANG Cong-fengand WAN Jian. Workload Characteristics Based Performance Optimization for Edge Intelligence [J]. Computer Science, 2022, 49(11): 266-276. |
[10] | XUE Wei, ZHANG Wen-sheng and REN Jun-hong. Online Learning Based on Stochastic Spectral Gradient [J]. Computer Science, 2016, 43(9): 47-51. |
[11] | CHEN Xiao-pan, KONG Yun-feng, ZHENG Tai-hao and ZHENG Shan-shan. Metaheuristic Algorithm for Split Demand School Bus Routing Problem [J]. Computer Science, 2016, 43(10): 234-241. |
|