Computer Science ›› 2025, Vol. 52 ›› Issue (6): 106-117.doi: 10.11896/jsjkx.240600001
• Database & Big Data & Data Science • Previous Articles Next Articles
LIAO Sirui1, HUANG Feihu1, ZHAN Pengxiang1, PENG Jian1, ZHANG Linghao2
CLC Number:
[1]BLÁZQUEZ-GARCÍA A,CONDE A,MORI U,et al.A review on outlier anomaly detection in time series data[J].ACM Computing Surveys,2021,54(3):1-33. [2]CHOI K,YI J H,PARK C,et al.Deep learning for anomaly detection in time-series data:review,analysis,and guidelines[J].IEEE Access,2021,9:120043-120065. [3]GREFF K,SRIVASTAVA R K,KOUTNÍK J,et al.LSTM:A search space odyssey[J].IEEE Transactions on Neural Networks and Learning Systems,2016,28(10):2222-2232. [4]ZHANG G H,YAN X F,GUAN D H.Anomaly Detection of Time-series Based on Multi-modal Feature Fusion[J/OL].https://www.jsjkx.com/CN/article/openArticlePDF.jsp?id=21650. [5]BREUNIG M M,KRIEGEL H P,NG R T,et al.LOF:identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data.New York:ACM,2000:93-104. [6]LIU F T,TING K M,ZHOU Z H.Isolation-based anomaly detection[J].ACM Transactions on Knowledge Discovery from Data,2012,6(1):1-39. [7]SCHÖLKOPF B,PLATT J C,SHAWE-TAYLOR J,et al.Estimating the support of a high-dimensional distribution.[J] Neural Computation,2001,13(7):1443-1471. [8]RUFF L,VANDERMEULEN R,GOERNITZ N,et al.Deepone-class classification[C]//Proceedings of The 37th International Conference on Machine Learning.PMLR,2018:4393-4402. [9]PARK D,HOSHI Y,KEMP C C.A multimodal anomaly detector for robot-assisted feeding using an lstm-based variational autoencoder[J].IEEE Robotics and Automation Letters,2018,3(3):1544-1551. [10]TAO T,ZHOU X,MA B,et al.Abnormal time series data detection of gas station by Seq2Seq model based on bidirectional long short-term memory[J].Computer Applications,2019,39(3):924-929. [11]ZHOU B,LIU S H,HOOI B,et al.Beatgan:Anomalous rhythm detection using adversarially generated time series[C]//Proceedings of the 28th International Joint Conferences on Artificial Intelligence.AAAI,2019:4433-4439. [12]SU Y,ZHAO Y J,NIU C H,et al.Robust anomaly detection formultivariate time series through stochastic recurrent neural network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.ACM,2019:2828-2837. [13]WANG L,ZHANG X Y,XV B W,et al.InterFusion:Inter-action-based 4D radar and LiDAR fusion for 3D object detection[C]//2022 IEEE/RSJ International Conference on Intelligent Robots and Systems.IEEE,2022:12247-12253. [14]SHEN L F,LI Z C,KWOK J.Timeseries anomaly detection using temporal hierarchical one-class network[J].Advances in Neural Information Processing Systems,2020,33:13016-13026. [15]XU J H,WU H X,WANG J M,et al.Anomaly Transformer:Time Series Anomaly Detection with Association Discrepancy[C]//Proceedings of the 10th International Conference on Learning Representations(Virtual).2022:1-20. [16]YANG Y Y,ZHANG C L,ZHOU T,et al.DCdetector:DualAttention Contrastive Representation Learning for Time Series Anomaly Detection[C]//Proceedings of the 29th ACM SIGKDD International Conference on Knowledge Discovery & Data Mi-ning.ACM,2023:3033-3045. [17]TARIQ S,LEE S,SHIN Y,et al.Detecting anomalies in space using multivariate convolutional LSTM with mixtures of probabilistic PCA[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.ACM,2019:2123-2133. [18]CARMONA C U,AUBET F X,FLUNKERT V,et al.Neural contextual anomaly detection for time series[C]//Proceedings of the 31st International Joint Conferences on Artificial Intelligence.2022:4433-4439. [19]HENDRYCKS D,MAZEIKA M,DIETTERICH T.Deep ano-maly detection with outlier exposure[J].arXiv:1812.04606,2018. [20]RUFF L,VANDERMEULEN R A,FRANKS B J,et al.Rethinking assumptions in deep anomaly detection[J].arXiv:2006.00339,2020. [21]ZONG B,SONG Q,MIN M R,et al.Deep autoencoding gaussian mixture model for unsupervised anomaly detection[C]//Proceedings of the 6th International Conference on Learning Representations.2018:1-19. [22]YAIRI T,TAKEISHI N,ODA T,et al.A data-driven healthmonitoring method for satellite housekeeping data based on probabilistic clustering and dimensionality reduction[J].IEEE Transactions on Aerospace and Electronic Systems,2017,53(3):1384-1401. [23]ANDERSON O D.Time-Series[J] Journal of the Royal Statistical Society Series D:The Statistician,1976,25(4):308-310. [24]CHO K,VAN MERRIENBOER B,GULCEHRE C,et al.Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.2014:1724. [25]YIN C Y,ZHOU L W.Unsupervised time series anomaly detection model based on re-encoding[J].Journal of Computer Applications.2023,43(3):804-811. [26]ZHAO H,WANG Y J,DUAN J Y,et al.Multivariate time-series anomaly detection via graph attention network[C]//Proceedings of the 2020 IEEE International Conference on Data Mining. 2020:841-850. [27]ZENG W R,WU J,YAN F.Time Series Anomaly DetectionModel Based on Hierarchical Temporal Memory[J].Acta Electronica Sinica,2018,46(2):325-332. [28]ZHANG S Q,ZHANG Z Y,JIANG Y,et al.Time Series Theoryand Algorithm of Predictable Learnability Based on Error Truncation Assumption[J].Chinese Journal of Computers,2022,45(11):2279-2289. [29]GOODFELLOW I J,POUGET-ABADIE J,MIRZA M,et al.Generative adversarial networks[J].Communications of the ACM,2014,63:139-144. [30]KINGMA D P,WELLING M.Auto-encoding variational Bayes[J].arXiv:1312.6114,2013. [31]LI D,CHEN D C,JIN B H,et al.MAD-GAN:Multivariateanomaly detection for time series data with generative adversarialnetworks[C]//Proceedings of the 28th International Conference on Artificial Neural Networks.2019:703-716. [32]CHEN Z K,CHEN D S,ZHANG X,et al.Learning graph structures with transformer for multivariate time-series anomaly detection in IoT[J].IEEE Internet of Things Journal,2021,9(12):9179-9189. [33]TULI S,CASALE G,JENNINGS N R.TranAD:deep trans-former networks for anomaly detection in multivariate time series data[J].Proceedings of the VLDB Endowment,2022,15(6):1201-1214. [34]NIE Y,NGUYEN N H,SINTHONG P,et al.A Time Series is Worth 64 Words:Long-term Forecasting with Transformers[C]//Proceedings of the 11th International Conference on Learning Representations.2023:1-24. [35]ABDULAAL A,LIU Z,LANCEWICKI T.Practical approach to asynchronous multivariate time series anomaly detection and localization[C]//Proceedings of the 27th ACM SIGKDD Confe-rence on Knowledge Discovery & Data Mining.2021:2485-2494. [36]ENTEKHABI D,NJOKU E G,O'NEILL P E,et al.The soilmoisture active passive(SMAP) mission[J].Proceedings of the IEEE,2010,98(5):704-716. [37]HUNDMAN K,CONSTANTINOU V,LAPORTE C,et al.Detecting spacecraft anomalies using lstms and nonparametric dynamic thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mi-ning.2018:387-395. [38]GOH J,ADEPU S,JUNEJO K N,et al.A dataset to support research in the design of secure water treatment systems[C]//Proceedings of the 11th International Conference on Critical Information Infrastructures Security.2016:88-99. [39]XU H W,CHEN W X,ZHAO N W,et al.Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications[C]//Proceedings of the 2018 World Wide Web Conference.2018:187-196. |
[1] | WU Huinan, XING Hongjie, LI Gang. Deep Multiple-sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior [J]. Computer Science, 2024, 51(6): 135-143. |
[2] | XING Yun-bing, LONG Guang-yu, HU Chun-yu, HU Li-sha. Human Activity Recognition Method Based on Class Increment SVM [J]. Computer Science, 2022, 49(5): 78-83. |
[3] | XIAO Yun-shi, ZHAO Yan-qing and CHENG Cheng. Blind Estimation of Seismic Wavelet on Unit Hypersphere with Mean Shift [J]. Computer Science, 2017, 44(5): 33-36. |
[4] | . Multi-subjects Classification Algorithm Based on Maximal-margin Minimal-volume Hypersphere Support Vector Machine [J]. Computer Science, 2012, 39(8): 239-238. |
[5] | XU Tu HE Da-ke (School of Information Science and Technology, Southwest J iaotong University, Chengdu 610031, China). [J]. Computer Science, 2008, 35(12): 94-97. |
|