Computer Science ›› 2025, Vol. 52 ›› Issue (8): 127-135.doi: 10.11896/jsjkx.240600103
• Database & Big Data 1 Data Science • Previous Articles Next Articles
ZHU Rui1, YE Yaqin1,2, LI Shengwen1, TANG Zijian1, XIAO Yue1
CLC Number:
[1]DOURISBOURE Y,GERACI F,PELLEGRINI M.Extractionand classification of dense communities in the web[C]//Proceedings of the 16th International Conference on World Wide Web.2007:461-470. [2]LINY R,CHI Y,ZHU S,et al.Analyzing communities and their evolutions in dynamic social networks[J].ACM Transactions on Knowledge Discovery from Data,2009,3(2):1-31. [3]SINGHC K,JOLAD S.Structure and evolution of Indian physics co-authorship networks[J].Scientometrics,2019,118(2):385-406. [4]ROSSETTI G,CAZABET R.Community discovery in dynamicnetworks:a survey[J].ACM Computing Surveys,2018,51(2):1-37. [5]MA R X,DENG G S.Research of Dynamic Community Discovery Based on Role Assorted Thoughts[J].Chinese Journal of Computer Science,2012,39(9):60-63,70. [6]WANG B B,XIN J C,CHEN J Y,et al.Motif-aware Adaptive Cross-layer Random W alk Community Detection[J].Chinese Journal of Computer Science,2024,51(6):128-134. [7]CHEN J,YUAN B.Detecting functional modules in the yeastprotein-protein interaction network[J].Bioinformatics,2006,22(18):2283-2290. [8]DU N,WU B,PEI X,et al.Community detection in large-scalesocial networks[C]//Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis.2007:16-25. [9]PAN Y,WANG S H,ZHANG L,et al.Survey of Community Detection in Complex Network[J].Chinese Journal of Computer Science,2022,49(S2):208-218. [10]HOPCROFT J,KHAN O,KULIS B,et al.Tracking evolvingcommunities in large linked networks[J].Proceedings of the National Academy of Sciences,2004,101(suppl_1):5249-5253. [11]LIT,WANG W,JIAO P,et al.Exploring temporal community structure via network embedding[J].IEEE Transactions on Cybernetics,2023,53(11):7021-7033. [12]GUIMERAR,MOSSA S,TURTSCHI A,et al.The worldwide air transportation network:Anomalous centrality,community structure,and cities' global roles[J].Proceedings of the Na-tional Academy of Sciences,2005,102(22):7794-7799. [13]LUKASOVá A.Hierarchical agglomerative clustering procedure[J].Pattern Recognition,1979,11(5/6):365-381. [14]TAJEUNAE G,BOUGUESSA M,WANG S.Tracking the evolution of community structures in time-evolving social networks[C]//2015 IEEE International Conference on Data Science and Advanced Analytics(DSAA).IEEE,2015:1-10. [15]LEVANDOWSKYM,WINTER D.Distance between sets[J].Nature,1971,234(5323):34-35. [16]JIAT,CAI C,LI X,et al.Dynamical community detection and spatiotemporal analysis in multilayer spatial interaction networks using trajectory data[J].International Journal of Geographical Information Science,2022,36(9):1719-1740. [17]TRAAGV A,WALTMAN L,VAN ECK N J.From Louvain to Leiden:guaranteeing well-connected communities[J].Scientific Reports,2019,9(1):5233. [18]NGUYENN P,DINH T N,XUAN Y,et al.Adaptive algorithms for detecting community structure in dynamic social networks[C]//2011 Proceedings IEEE INFOCOM.IEEE,2011:2282-2290. [19]ZHUANGD,CHANG J M,LI M.DynaMo:Dynamic community detection by incrementally maximizing modularity[J].IEEE Transactions on Knowledge and Data Engineering,2019,33(5):1934-1945. [20]LONGH,LI X,LIU X W,et al.BBTA:Detecting communities incrementally from dynamic networks based on tracking of backbones and bridges[J].Applied Intelligence,2023,53(1):1084-1100. [21]LINY R,CHI Y,ZHU S,et al.Facetnet:a framework for analyzing communities and their evolutions in dynamic networks[C]//Proceedings of the 17th International Conference on World Wide Web.2008:685-694. [22]FU L D,NIE J J.Dynamic Community Detection Based on Evolutionary Spectral Method[J].Chinese Journal of Computer Science,2018,45(2):171-174. [23]LIUF,CHOI D,XIE L,et al.Global spectral clustering in dynamic networks[J].Proceedings of the National Academy of Sciences,2018,115(5):927-932. [24]MA X,DONG D.Evolutionary nonnegative matrix factorization algorithms for community detection in dynamic networks[J].IEEE Transactions on Knowledge and Data Engineering,2017,29(5):1045-1058. [25]LI D,LIN Q,MA X.Identification of dynamic community intemporal network via joint learning graph representation and nonnegative matrix factorization[J].Neurocomputing,2021,435:77-90. [26]LI D,MA X,GONG M.Joint learning of feature extraction and clustering for large-scale temporal networks[J].IEEE Transactions on Cybernetics,2023,53(3):1653-1666. [27]GOYA LP,KAMRA N,HE X,et al.Dyngem:Deep embedding method for dynamic graphs[J].arXiv:1805.11273,2018. [28]GOYAL P,CHHETRI S R,CANEDO A.dyngraph2vec:Capturing network dynamics using dynamic graph representation learning[J].Knowledge-Based Systems,2020,187:104816. [29]PU S,ZHAO W D.Community Detection Algorithm for Dyna-mic Academic Network[J].Chinese Journal of Computer Science,2022,49(1):89-94. [30]PAREJA A,DOMENICONI G,CHEN J,et al.Evolvegcn:Evolving graph convolutional networks for dynamic graphs[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:5363-5370. [31]GAO C,ZHU J,ZHANG F,et al.A novel representation lear-ning for dynamic graphs based on graph convolutional networks[J].IEEE Transactions on Cybernetics,2023,53(6):3599-3612. [32]LIU H,HE L,ZHANG F,et al.Dynamic community detection over evolving networks based on the optimized deep graph infomax[J].Chaos:An Interdisciplinary Journal of Nonlinear Science,2022,32(5):053119. [33]KIPF T N,WELLING M.Variational graph auto-encoders[C]//Neural Information Processing Systems Workshop on Bayesian Deep Learning.2016. [34]ECKART C,YOUNG G.The approximation of one matrix by another of lower rank[J].Psychometrika,1936,1:211-218. [35]QIU C,HUANG Z,XU W,et al.VGAER:graph neural network reconstruction based community detection[J].arXiv:2201.04066,2022. [36]ROSSETTI G.RDyn:graph benchmark handling community dynamics[J].Journal of Complex Networks,2017,5(6):893-912. [37]NEWMANM E J,GIRVAN M.Finding and evaluating community structure in networks[J].Physical Review E,2004,69(2):026113. [38]GREENE D,DOYLE D,CUNNINGHAM P.Tracking the evolution of communities in dynamic social networks[C]//2010 International Conference on Advances in Social Networks Analysis and Mining.IEEE,2010:176-183. [39]GÉNOIS M,BARRAT A.Can co-location be used as a proxy for face-to-face contacts?[J].EPJ Data Science,2018,7(1):1-18. [40]SUN J,FALOUTSOS C,PAPADIMITRIOU S,et al.Graph-scope:parameter-free mining of large time-evolving graphs[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2007:687-696. [41]PARANJAPEA,BENSON A R,LESKOVEC J.Motifs in temporal networks[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining.2017:601-610. [42]ROSSI R,AHMED N.The network data repository with interactive graph analytics and visualization[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2015. [43]LIUF,WU J,ZHOU C,et al.Evolutionary community detection in dynamic social networks[C]//2019 International Joint Conference on Neural Networks(IJCNN).IEEE,2019:1-7. [44]AGARWALP,VERMA R,AGARWAL A,et al.DyPerm:Maximizing permanence for dynamic community detection[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining.Cham:Springer,2018:437-449. [45]ZHANG Z,CUI P,PEI J,et al.Timers:Error-bounded svd restart on dynamic networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018. [46]ESTÉVEZ P A,TESMER M,PEREZ C A,et al.Normalized mutual information feature selection[J].IEEE Transactions on Neural Networks,2009,20(2):189-201. [47]HUBERT L,ARABIE P.Comparing partitions[J].Journal ofClassification,1985,2:193-218. |
[1] | LIAO Sirui, HUANG Feihu, ZHAN Pengxiang, PENG Jian, ZHANG Linghao. DCDAD:Differentiated Context Dependency for Time Series Anomaly Detection Method [J]. Computer Science, 2025, 52(6): 106-117. |
[2] | GUO Xuan, HOU Jinlin, WANG Wenjun, JIAO Pengfei. Dynamic Link Prediction Method for Adaptively Modeling Network Dynamics [J]. Computer Science, 2025, 52(6): 118-128. |
[3] | TAN Qiyin, YU Jiong, CHEN Zixin. Outlier Detection Method Based on Adaptive Graph Autoencoder [J]. Computer Science, 2025, 52(6): 129-138. |
[4] | WANG Jinghong, WU Zhibing, WANG Xizhao, LI Haokang. Semantic-aware Heterogeneous Graph Attention Network Based on Multi-view RepresentationLearning [J]. Computer Science, 2025, 52(6): 167-178. |
[5] | WU Jie, WAN Yuan, LIU Qiujie. Consistent Block Diagonal and Exclusive Multi-view Subspace Clustering [J]. Computer Science, 2025, 52(4): 138-146. |
[6] | YE Lishuo, HE Zhixue. Multi-granularity Time Series Contrastive Learning Method Incorporating Time-Frequency Features [J]. Computer Science, 2025, 52(1): 170-182. |
[7] | LUO Hangyu, WANG Xiaoping, MEI Meng, ZHAO Wenhao, LIU Sichun. Contrastive Representation Learning for Industrial Defect Detection [J]. Computer Science, 2025, 52(1): 210-220. |
[8] | MENG Lingjun, CHEN Hongchang, WANG Gengrun. Social Bots Detection Based on Multi-relationship Graph Attention Network [J]. Computer Science, 2025, 52(1): 298-306. |
[9] | NIU Guanglin, LIN Zhen. Survey of Knowledge Graph Representation Learning for Relation Feature Modeling [J]. Computer Science, 2024, 51(9): 182-195. |
[10] | XU Bei, LIU Tong. Semi-supervised Emotional Music Generation Method Based on Improved Gaussian Mixture Variational Autoencoders [J]. Computer Science, 2024, 51(8): 281-296. |
[11] | WEI Ziang, PENG Jian, HUANG Feihu, JU Shenggen. Text Classification Method Based on Multi Graph Convolution and Hierarchical Pooling [J]. Computer Science, 2024, 51(7): 303-309. |
[12] | ZHANG Hui, ZHANG Xiaoxiong, DING Kun, LIU Shanshan. Device Fault Inference and Prediction Method Based on Dynamic Graph Representation [J]. Computer Science, 2024, 51(7): 310-318. |
[13] | LIU Wei, SONG You, ZHUO Peiyan, WU Weiqiang, LIAN Xin. Study on Kcore-GCN Anti-fraud Algorithm Fusing Multi-source Graph Features [J]. Computer Science, 2024, 51(6A): 230600040-7. |
[14] | YANG Xuhua, ZHANG Lian, YE Lei. Adaptive Context Matching Network for Few-shot Knowledge Graph Completion [J]. Computer Science, 2024, 51(5): 223-231. |
[15] | HUANG Shuo, SUN Liang, WANG Meiling, ZHANG Daoqiang. Multi-view Autoencoder-based Functional Alignment of Multi-subject fMRI [J]. Computer Science, 2024, 51(3): 141-146. |
|