Computer Science ›› 2025, Vol. 52 ›› Issue (1): 210-220.doi: 10.11896/jsjkx.240100202
• Computer Graphics & Multimedia • Previous Articles Next Articles
LUO Hangyu, WANG Xiaoping, MEI Meng, ZHAO Wenhao, LIU Sichun
CLC Number:
[1]LUO D L,CAI Y X,YANG Z H,et al.A review of deep lear-ning methods for industrial defect detection [J].Chinese Science:Information Science,2022,52(6):1002-1039. [2]DAVLETSHINA D,MELNYCHUK V,TRAN V,et al.Unsupervised anomaly detection for X-ray images[J].arXiv:2001.10883,2019. [3]NGUYEN D T,LOU Z,KLAR M,et al.Anomaly detectionwith multiple-hypotheses predictions[C]//International Confe-rence on Machine Learning.2019:4800-4809. [4]SAKURADA M,YAIRI T.Anomaly detection using autoenco-ders with nonlinear dimensionality reduction[C]//Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis.2014:4-11. [5]PIDHORSKYI S,ALMOHSEN R,DORETTO G.Generativeprobabilistic novelty detection with adversarial autoencoders[C]//Advances in Neural Information Processing Systems.2018:6822-6833. [6]SABOKROU M,KHALOOEI M,FATHY M,et al.Adversa-rially learned one-class classifier for novelty detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:3379-3388. [7]ZHANG Y,CHEN X W,CHEN M D,et al.Unsupervised industrial surface anomaly detection using contrastive learning generative adversarial networks[J].Journal of Electronic Mea-surement and Instrumentation,2023,37(10):193-201. [8]RUFF L,VANDERMEULEN R,GOERNITZ N,et al.Deepone-class classification[C]//Proceedings of the International Conference on Machine Learning.2018:4393-4402. [9]PERERA P,PATEL V M.Learning deep features for one-class classification[J].IEEE Transactions on Image Processing,2019,28(11):5450-5463. [10]YI J,YOON S.Patch svdd:Patch-level svdd for anomaly detection and segmentation[C]//Proceedings of the Asian Conference on Computer Vision.2020:375-390. [11]ROTH K,PEMULA L,ZEPEDA J,et al.Towards total recall in industrial anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:14318-14328. [12]COHEN N,HOSHEN Y.Sub-image anomaly detection withdeep pyramid correspondences[J].arXiv:2005.02357,2020. [13]DEFARD T,SETKOV A,LOESCH A,et al.Padim:a patch distribution modeling framework for anomaly detection and localization[C]//Proceedings of the International Conference on Pattern Recognition.2020:475-489. [14]HE S R,ZHANG S J,WANG Y X.Industrial Defect Detection Model Integrating Multi-scale Features[J].Journal of Chinese Computer Systems,2023,44(5):1029-1034. [15]HUANG P Q Z,DUAN X J,HUANG W W,et al.Asymmetric defect detection method of small sample image based on meta learning[J].Journal of Jilin University(Engineering and Technology Edition),2023,53(1):234-240. [16]LEE S,LEE S,SONG B C.Cfa:Coupled-hypersphere-based feature adaptation for target-oriented anomaly localization[J].IEEE Access,2022,10:78446-78454. [17]WU Z,XIONG Y,YU S X,et al.Unsupervised feature learning via non-parametric instance discrimination[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:3733-3742. [18]CHEN T,KORNBLITH S,NOROUZI M,et al.A simpleframework for contrastive learning of visual representations[C]//International Conference on Machine Learning.2020:597-1607. [19]CHEN X,HE K.Exploring simple siamese representation lear-ning[C]//Proceedings of the IEEE/CVF Conference on Compu-ter Vision and Pattern Recognition.2021:15750-15758. [20]YE M,ZHANG X,YUEN P C,et al.Unsupervised embedding learning via invariant and spreading instance feature[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:6210-6219. [21]HE K,FAN H,WU Y,et al.Momentum contrast for unsupervised visual representation learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:9729-9738. [22]CHEN T,KORNBLITH S,NOROUZI M,et al.A simpleframework for contrastive learning of visual representations[C]//Proceedings of the International Conference on Machine Learning.2020:1597-1601. [23]KIM S,KIM D,CHO M,et al.Embedding transfer with label relaxation for improved metric learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:3967-3976. [24]GUO J,LU S,JIA L,et al.ReContrast:Domain-specific anomaly detection via contrastive reconstruction [J].arXiv.2306.02602,2023. [25]HYUN J,KIM S,JEON G,et al.Reconpatch:Contrastive patch representation learning for industrial anomaly detection[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2024:2052-2061. [26]ZHANG Z Q,ZHANG H,WU T Y,et al.Continuous dense normalized flow model for industrial image anomaly detection[J].Computer Science,2023,50(12):212-220. [27]BERGMANN P,FAUSER M,SATTLEGGER D,et al.MVTec AD-A comprehensive real-world dataset for unsupervised ano-maly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:9592-9600. [28]ZOU Y,JEONG J,PEMULA L,et al.Spot-the-difference self-supervised pre-training for anomaly detection and segmentation[C]//Proceedings of the European Conference on Computer Vision.2022:392-408. [29]GUDOVSKIY D,ISHIZAKA S,KOZUKA K.Cflow-ad:Real-time unsupervised anomaly detection with localization via conditional normalizing flows[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision.2022:98-107. [30]LIU T,LI B,DU X,et al.FAIR:Frequency-aware image restoration for industrial visual anomaly detection[J].arXiv:2309.07068,2023. [31]GUO H W,REN L P,FU J J,et al.Template-guided hierarchical feature restoration for anomaly detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:6447-6458. [32]BAE J,LEE J H,KIM S.PNI:Industrial anomaly detectionusing position and neighborhood information[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2023:6373-6383. |
[1] | SUN Haowen, DING Jiaman, LI Bowen, JIA Lianyin. Clustering Algorithm Based on Attribute Similarity and Distributed Structure Connectivity [J]. Computer Science, 2024, 51(7): 124-132. |
[2] | GAO Jianlei, LUO Minxia. Similarity Measure Between Picture Fuzzy Sets and Its Application in Pattern Recognition [J]. Computer Science, 2024, 51(6A): 230500153-5. |
[3] | HUANG Ming, SUN Lin-fu, REN Chun-hua , WU Qi-shi. Improved KNN Time Series Analysis Method [J]. Computer Science, 2021, 48(6): 71-78. |
[4] | ZHANG Yan-jin, BAI Liang. Fast Symbolic Data Clustering Algorithm Based on Symbolic Relation Graph [J]. Computer Science, 2021, 48(4): 111-116. |
[5] | WANG Xing , KANG Zhao. Smooth Representation-based Semi-supervised Classification [J]. Computer Science, 2021, 48(3): 124-129. |
[6] | HU Ping, QIN Ke-yun. Similarity Construction Method for Pythagorean Fuzzy Set Based on Fuzzy Equivalence [J]. Computer Science, 2021, 48(1): 152-156. |
[7] | SHAO Yang-xue, MENG Wei, KONG Deng-zhen, HAN Lin-xuan, LIU Yang. Cross-modal Retrieval Method for Special Vehicles Based on Deep Learning [J]. Computer Science, 2020, 47(12): 205-209. |
[8] | DING Wu, MA Yuan, DU Shi-lei, LI Hai-chen, DING Gong-bo, WANG Chao. Mining Trend Similarity of Multivariate Hydrological Time Series Based on XGBoost Algorithm [J]. Computer Science, 2020, 47(11A): 459-463. |
[9] | WANG Yong, WANG Yong-dong, DENG Jiang-zhou, ZHANG Pu. Recommendation Algorithm Based on Jensen-Shannon Divergence [J]. Computer Science, 2019, 46(2): 210-214. |
[10] |
WEI Hui-juan, DAI Mu-hong.
Collaboration Filtering Recommendation Algorithm Based on Ratings Difference and Interest Similarity [J]. Computer Science, 2018, 45(6A): 398-401. |
[11] | LIU Yi-zhi, CHENG Ru-feng and LIANG Yong-quan. Clustering Algorithm Based on Shared Nearest Neighbors and Density Peaks [J]. Computer Science, 2018, 45(2): 125-129. |
[12] | JI Jin-chao, ZHAO Xiao-wei, HE Fei, HU Ying-hui, BAI Tian and LI Zai-rong. Fuzzy Weighted Clustering Algorithm with Fuzzy Centroid for Mixed Data [J]. Computer Science, 2018, 45(2): 109-113. |
[13] | LIU Shuang, BAI Liang, YU Tian-yuan and JIA Yu-hua. Cross-media Semantic Similarity Measurement Using Bi-directional Learning Ranking [J]. Computer Science, 2017, 44(Z6): 84-87. |
[14] | CHI Yun-xian, ZHAO Shu-liang, LUO Yan, ZHAO Jun-peng, GAO Lin and LI Chao. Similarity Measure for Text Classification Based on Feature Subjection Degree [J]. Computer Science, 2017, 44(11): 289-296. |
[15] | LI Yi-kun, HU Yu-xi and YANG Ping. Frequency Domain Information Based Water Body Image Retrieval in High Resolution Satellite Image Databases [J]. Computer Science, 2016, 43(Z6): 118-121. |
|