Computer Science ›› 2023, Vol. 50 ›› Issue (11A): 230100073-7.doi: 10.11896/jsjkx.230100073
• Image Processing & Multimedia Technology • Previous Articles Next Articles
WU Tianyue1, ZHANG Hui2, ZHANG Zouquan1, TANG Junkun1
CLC Number:
[1]TAO X,GONG X,ZHANG X,et al.Deep Learning for Unsupervised Anomaly Localization in Industrial Images:A Survey[J].IEEE Transactions on Instrumentation and Measurement,2022,71:1-21. [2]LV C,SHEN F,ZHANG F.Review of Image Anomaly Detection[J].Acta Automatica Sinica,2022,48(6):1402-1428. [3]CHOI J,KIM C.Unsupervised detection of surface defects:A two-step approach[C]//2012 19th IEEE International Conference on Image Processing.2012:1037-1040. [4]BERGMANN P,FAUSER M,SATTLEGGER D,et al.MVTec AD--A comprehensive real-world dataset for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF Confe-rence on CVPR.2019:9592-9600. [5]CHEN Y,TIAN Y,PANG G,et al.Deep One-Class Classification via Interpolated Gaussian Descriptor[J/OL].(2022-05-24)[2022-07-31].https://arxiv.org/pdf/2101.10043v5.pdf. [6]HAN J,CHENG J F,LI Y,et al.Self-supervised Deep Clustering Algorithm Based on Self-attention[J].Computer Science,2022,49(3):134-143. [7]GONG D,LIU L,LE V,et al.Memorizing normality to detectanomaly:Memory-augmented deep autoencoder for unsupervised anomaly detection[C]//Proceedings of the IEEE International Conference on Computer Vision.2019:1705-1714. [8]PARK H,NOH J,HAM B.Learning memory-guided normality for anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:14372-14381. [9]ZHOU K,LI J,XIAO Y,et al.Memorizing Structure-Texture Correspondence for Image Anomaly Detection[J].IEEE Transactions on Neural Networks and Learning Systems,2021,33(6):2335-2349. [10]YANG L,JIANG A L,QIANG Y.Structure Preserving Unsupervised Feature Selection Based on Autoencoder and Manifold Regularization[J].Computer Science,2021,48(8):53-59. [11]VZ A,MK A,DS A.Reconstruction by inpainting for visualanomaly detection[J].Pattern Recognition,2021,112(2):107706. [12]LI Z,LI N,JIANG K,et al.Superpixel masking and inpainting for self-supervised anomaly detection[C]//British Machine Vision Conference.2020:7-10. [13]YAN X,ZHANG H,XU X,et al.Learning semantic contextfrom normal samples for unsupervised anomaly detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:3110-3118. [14]WANG S,WU L,CUI L,et al.Glancing at the Patch:Anomaly Localization with Global and Local Feature Comparison[C]//Computer Vision and Pattern Recognition.2021:254-263. [15]SALEHI M,SADJADI N,BASELIZADEH S,et al.Multiresolution Knowledge Distillation for Anomaly Detection[C]//Computer Vision and Pattern Recognition.2021:14897-14907. [16]XING P,JIANG X,TANG J H,et al.Feature Consistent Restricted Distillation Learning for Visual Anomaly Detection[J/OL].Journal of Software.(2021-10-11)[2022-07-31].http://jos.org.cn/jos/article/abstract/Lf051. [17]LI C L,SOHN K,YOON J,et al.Cutpaste:Self-SupervisedLearning for Anomaly Detection and Localization[C]//Proceedings of the IEEE International Conference on Computer Vision.Nashville:IEEE Press,2021:9664-9674. [18]AHORÉ,ZIOU D.Image quality metrics:PSNR vs.SSIM[C]//20th International Conference on Pattern Recognition(ICPR 2010).IEEE Computer Society,2010:2366-2369. [19]PERERA P,NALLAPATI R,BING X.OCGAN:One-ClassNovelty Detection Using GANs With Constrained Latent Representations[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:2898-2906. [20]DEHAENE D,FRIGO O,COMBREXELLE S,et al.Iterative energy-based projection on a normal data manifold for anomaly localization[J/OL].(2020-12-10)[2022-10-25].https://arxiv.org/abs/2002.03734v1. [21]HUANG C Q,XU Q W,WANG Y F,et al.Self-Supervised Masking for Unsupervised Anomaly Detection and Localization[J].IEEE Transactions on Multimedia.doi:10.1109/TMM.2022.3175611. |
[1] | ZHAO Mingmin, YANG Qiuhui, HONG Mei, CAI Chuang. Smart Contract Fuzzing Based on Deep Learning and Information Feedback [J]. Computer Science, 2023, 50(9): 117-122. |
[2] | LI Haiming, ZHU Zhiheng, LIU Lei, GUO Chenkai. Multi-task Graph-embedding Deep Prediction Model for Mobile App Rating Recommendation [J]. Computer Science, 2023, 50(9): 160-167. |
[3] | HUANG Hanqiang, XING Yunbing, SHEN Jianfei, FAN Feiyi. Sign Language Animation Splicing Model Based on LpTransformer Network [J]. Computer Science, 2023, 50(9): 184-191. |
[4] | ZHU Ye, HAO Yingguang, WANG Hongyu. Deep Learning Based Salient Object Detection in Infrared Video [J]. Computer Science, 2023, 50(9): 227-234. |
[5] | WANG Yu, WANG Zuchao, PAN Rui. Survey of DGA Domain Name Detection Based on Character Feature [J]. Computer Science, 2023, 50(8): 251-259. |
[6] | ZHANG Yian, YANG Ying, REN Gang, WANG Gang. Study on Multimodal Online Reviews Helpfulness Prediction Based on Attention Mechanism [J]. Computer Science, 2023, 50(8): 37-44. |
[7] | SONG Xinyang, YAN Zhiyuan, SUN Muyi, DAI Linlin, LI Qi, SUN Zhenan. Review of Talking Face Generation [J]. Computer Science, 2023, 50(8): 68-78. |
[8] | WANG Xu, WU Yanxia, ZHANG Xue, HONG Ruize, LI Guangsheng. Survey of Rotating Object Detection Research in Computer Vision [J]. Computer Science, 2023, 50(8): 79-92. |
[9] | ZHOU Ziyi, XIONG Hailing. Image Captioning Optimization Strategy Based on Deep Learning [J]. Computer Science, 2023, 50(8): 99-110. |
[10] | ZHANG Xiao, DONG Hongbin. Lightweight Multi-view Stereo Integrating Coarse Cost Volume and Bilateral Grid [J]. Computer Science, 2023, 50(8): 125-132. |
[11] | LI Kun, GUO Wei, ZHANG Fan, DU Jiayu, YANG Meiyue. Adversarial Malware Generation Method Based on Genetic Algorithm [J]. Computer Science, 2023, 50(7): 325-331. |
[12] | WANG Mingxia, XIONG Yun. Disease Diagnosis Prediction Algorithm Based on Contrastive Learning [J]. Computer Science, 2023, 50(7): 46-52. |
[13] | SHEN Zhehui, WANG Kailai, KONG Xiangjie. Exploring Station Spatio-Temporal Mobility Pattern:A Short and Long-term Traffic Prediction Framework [J]. Computer Science, 2023, 50(7): 98-106. |
[14] | HUO Weile, JING Tao, REN Shuang. Review of 3D Object Detection for Autonomous Driving [J]. Computer Science, 2023, 50(7): 107-118. |
[15] | ZHOU Bo, JIANG Peifeng, DUAN Chang, LUO Yuetong. Study on Single Background Object Detection Oriented Improved-RetinaNet Model and Its Application [J]. Computer Science, 2023, 50(7): 137-142. |
|