Computer Science ›› 2024, Vol. 51 ›› Issue (1): 266-272.doi: 10.11896/jsjkx.230500224
• Artificial Intelligence • Previous Articles Next Articles
ZHANG Wenqiong, LI Yun
CLC Number:
[1]MAHAJAN S,CARABALLO C,LU Y,et al.Trends in diffe-rences in health status and health care access and affordability by race and ethnicity in the United States,1999-2018[J].Jama,2021,326(7):637-648. [2]CAUFFMAN C.Discrimination in online advertising[J].Maastricht Journal of European and Comparative Law,2021,28(3):283-286. [3]LEE M S,FLORIDI L.Algorithmic fairness in mortgage len-ding:from absolute conditions to relational trade-offs[J].Minds and Machines,2021,31(1):165-191. [4]XU G N,CHEN Y P,CHEN Y M,et al.Data Debiasing Method Based on Constrained Optimized Generative Adversarial Networks[J].Computer Science,2022,49(6A):184-190. [5]PEDRESHI D,RUGGIERI S,TURINI F.Discrimination-aware data mining[C]//International Conference on Knowledge Discovery and Data Mining.ACM,2008:560-568. [6]VERMA S,RUBIN J.Fairness definitions explained[C]//International Workshop on Software Fairness(Fairware).ACM,2018:1-7. [7]MEHRABI N,MORSTATTER F,SAXENA N,et al.A survey on bias and fairness in machine learning[J].ACM Computing Surveys,2021,54(6):1-35. [8]BERK R,HEIDARI H,JABBARI S,et al.Fairness in criminal justice risk assessments:The state of the art[J].Sociological Methods Research,2021,50(1):3-44. [9]ZAFAR M B,VALERA I,GOMEZ R M,et al.Fairness beyond disparate treatment disparate impact:learning classification without disparate mistreatment[C]//International Conference on World Wide Web.ACM,2017:1171-1180. [10]HARDT M,PRICE E,SREBRO N.Equality of opportunity in supervised learning[J].Advances in Neural Information Processing Systems,2016,29(1):3323-3331. [11]CALDERS T,VERWER S.Three naive Bayes approaches for discrimination-free classification[J].Data Mining and Know-ledge Discovery,2010,21(2):277-292. [12]JIANG Z,HAN X,FAN C,et al.Generalized demographic parity for group fairness[C]//International Conference on Learning Representations.OpenReview.net,2022. [13]KAMIRAN F,LIOBAITÈ I,CALDERS T.Quantifying ex-plainable discrimination and removing illegal discrimination in automated decision making[J].Knowledge and Information Systems,2013,35(3):613-644. [14]XU R,CUI P,KUANG K,et al.Algorithmic decision making with conditional fairness[C]//International Conference on Knowledge Discovery and Data Mining.ACM,2020:2125-2135. [15]FELDMAN M,FRIEDLER S A,MOELLER J,et al.Certifying and removing disparate impact[C]//International Conference on Knowledge Discovery and Data Mining.ACM,2015:259-268. [16]STEWART R T.Identity and the limits of fair assessment[J].Journal of Theoretical Politics,2022,34(3):415-442. [17]HEDDEN B.On statistical criteria of algorithmic fairness[J].Philosophy and Public Affairs,2021,49(2):209-231. [18]CORBETT D S,PIERSON E,FELLER A,et al.Algorithmic decision making and the cost of fairness[C]//International Conference on Knowledge Discovery and Data Mining.ACM,2017:797-806. [19]ZHAO H,GORDON G.Inherent tradeoffs in learning fair representations[J].Machine Learning Research,2022,23(57):1-26. [20]DEHO O B,ZHAN C,LI J,et al.How do the existing fairness metrics and unfairness mitigation algorithms contribute to ethical learning analytics?[J].British Journal of Educational Technology,2022,53(4):822-843. [21]BAROCAS S,SELBST A D.Big data’s disparate impact[J].Calif.L.Rev.,2016,104:671-732. [22]CASTELNOVO A,CRUPI R,GRECO G,et al.A clarification of the nuances in the fairness metrics landscape[J].Scientific Reports,2022,12(1):4209. [23]DWORK C,HARDT M,PITASSI T,et al.Fairness throughawareness[C]//International Conference on Innovations in Theoretical Computer Science.ACM,2012:214-226. [24]LI A,PEARL J.Unit selection with causal diagram[C]//International Conference on Artificial Intelligence.AAAI,2022,36(5):5765-5772. [25]GEBHART V,SMERZI A.Extending the fair sampling as-sumption using causal diagrams[J].Quantum,2023,7:897-906. [26]KILBERTUS N,ROJAS C M,PARASCANDOLO G,et al.Avoiding discrimination through causal reasoning[J].Advances in Neural Information Processing Systems,2017,30(1):656-666. [27]KIM H,SHIN S,JANG J H,et al.Counterfactual fairness with disentangled causal effect variational autoencoder[C]//International Conference on Artificial Intelligence.AAAI,2021,35(9):8128-8136. [28]KUSNER M J,LOFTUS J,RUSSELL C,et al.Counterfactual fairness[J].Advances in Neural Information Processing Systems,2017,30(1):4066-4076. [29]PUJOL D,MCKENNA R,KUPPAM S,et al.Fair decision ma-king using privacy-protected data[C]//International Conference on Fairness,Accountability,and Transparency.ACM,2020:189-199. [30]CZARNOWSKA P,VYAS Y,SHAH K.Quantifying social biases in nlp:a generalization and empirical comparison of extrinsic fairness metrics[J].Transactions of the Association for Computational Linguistics,2021,9(1):1249-1267. [31]GAO R,GE Y,SHAH C.FAIR:Fairness-aware information retrieval evaluation[J].Association for Information Science and Technology,2022,73(10):1461-1473. [32]FRIEDLER S A,SCHEIDEGGER C,VENKATASUBRAMANIAN S,et al.A comparative study of fairness-enhancing interventions in machine learning[C]//International Conference on Fairness,Accountability,and Transparency.ACM,2019:329-338. [33]KLEINBERG J,MULLAINATHAN S,RAGHAVAN M.In-herent trade-offs in the fair determination of risk scores[C]//International Conference on Innovations in Theoretical Compu-ter Science.Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,2017:43:1-43:23. [34]LIU L T,DEAN S,ROLF E,et al.Delayed impact of fair machine learning[C]//International Conference on Machine Lear-ning.PMLR,2018:3150-3158. [35]BOUVATIER V,EL OUARDI S.Credit gaps as banking crisis predictors:a different tune for middle-and low-income countries[J].Emerging Markets Review,2023,54(C):101001. [36]FARNADI G,BABAKI B,GETOOR L.Fairness in relational domains[C]//International Conference on AI,Ethics,and Society.ACM,2018:108-114. [37]CHAO L M,YIN X L.AI Governance and System:Current Si-tuation and Trend[J].Computer Science,2021,48(9):1-8. [38]HUGGINS-MANLEY A C,BOOTH B M,D’ELLO S K.To-ward Argument-Based Fairness with an Application to AI-Enhanced Educational Assessments[J].Journal of Educational Measurement,2022,59(3):362-388. [39]GICHOYA J W,MCCOY L G,CELI L A,et al.Equity in essence:a call for operationalising fairness in machine learning for healthcare[J].BMJ Health & Care Informatics,2021,28(1):e100289. [40]KALLUS N,ZHOU A.Fairness,welfare,and equity in perso-nalized pricing[C]//Proceedings of the 2021 ACM Conference on Fairness,Accountability,and Transparency.2021:296-314. [41]BAKER R S,HAWN A.Algorithmic bias in education[J].International Journal of Artificial Intelligence in Education,2022,32(1):1052-1092. [42]REDDY S,ALLAN S,COGHLAN S,et al.A governance model for the application of AI in health care[J].Journal of the American Medical Informatics Association,2020,27(3):491-497. [43]DELOBELLE P,TOKPO E K,CALDERS T,et al.Measuring fairness with biased rulers:A comparative study on bias metrics for pre-trained language models[C]//The 2022 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies(NAACL 2022).2022:1693-1706. |
[1] | LI Haixia, SONG Danlei, KONG Jianing, SONG Yafei, CHANG Haiyan. Evaluation of Hyperparameter Optimization Techniques for Traditional Machine Learning Models [J]. Computer Science, 2024, 51(8): 242-255. |
[2] | ZHANG Daili, WANG Tinghua, ZHU Xinglin. Overview of Sample Reduction Algorithms for Support Vector Machine [J]. Computer Science, 2024, 51(7): 59-70. |
[3] | ZHOU Tianyang, YANG Lei. Study on Client Selection Strategy and Dataset Partition in Federated Learning Basedon Edge TB [J]. Computer Science, 2024, 51(6A): 230800046-6. |
[4] | SI Jia, LIANG Jianfeng, XIE Shuo, DENG Yingjun. Research Progress of Anomaly Detection in IaaS Cloud Operation Driven by Deep Learning [J]. Computer Science, 2024, 51(6A): 230400016-8. |
[5] | WANG Zhaodan, ZOU Weiqin, LIU Wenjie. Buggy File Identification Based on Recommendation Lists [J]. Computer Science, 2024, 51(6A): 230600088-8. |
[6] | LIU Wei, SONG You, ZHUO Peiyan, WU Weiqiang, LIAN Xin. Study on Kcore-GCN Anti-fraud Algorithm Fusing Multi-source Graph Features [J]. Computer Science, 2024, 51(6A): 230600040-7. |
[7] | CHEN Xiangxiao, CUI Xin, DU Qin, TANG Haoyao. Study on Optimization of Abnormal Traffic Detection Model Based on Machine Learning [J]. Computer Science, 2024, 51(6A): 230700051-5. |
[8] | TIAN Shuaihua, LI Zheng, WU Yonghao, LIU Yong. Identifying Coincidental Correct Test Cases Based on Machine Learning [J]. Computer Science, 2024, 51(6): 68-77. |
[9] | LIN Binwei, YU Zhiyong, HUANG Fangwan, GUO Xianwei. Data Completion and Prediction of Street Parking Spaces Based on Transformer [J]. Computer Science, 2024, 51(4): 165-173. |
[10] | WANG Degang, SUN Yi, GAO Qi. Active Membership Inference Attack Method Based on Multiple Redundant Neurons [J]. Computer Science, 2024, 51(4): 373-380. |
[11] | WANG Xin, HUANG Weikou, SUN Lingyun. Survey of Incentive Mechanism for Cross-silo Federated Learning [J]. Computer Science, 2024, 51(3): 20-29. |
[12] | LI Meng, DAI Haipeng, SUI Yongxi, GU Rong, CHEN Guihai. Survey of Learning-based Filters [J]. Computer Science, 2024, 51(1): 41-49. |
[13] | FU Jianming, JIANG Yuqian, HE Jia, ZHENG Rui, SURI Guga, PENG Guojun. Cryptocurrency Mining Malware Detection Method Based on Sample Embedding [J]. Computer Science, 2024, 51(1): 327-334. |
[14] | HUANG Shuxin, ZHANG Quanxin, WANG Yajie, ZHANG Yaoyuan, LI Yuanzhang. Research Progress of Backdoor Attacks in Deep Neural Networks [J]. Computer Science, 2023, 50(9): 52-61. |
[15] | WANG Yao, LI Yi. Termination Analysis of Single Path Loop Programs Based on Iterative Trajectory Division [J]. Computer Science, 2023, 50(9): 108-116. |
|