Computer Science ›› 2024, Vol. 51 ›› Issue (6): 118-127.doi: 10.11896/jsjkx.230600168
• Database & Big Data & Data Science • Previous Articles Next Articles
WU Nannan1, GUO Zehao1, ZHAO Yiming1, YU Wei2, SUN Ying1,3, WANG Wenjun1
CLC Number:
[1]DING K,LI J,AGARWAL N,et al.Inductive anomaly detection on attributed networks[C]//Proceedings of the Twenty-ninth International Conference on International Joint Conferences on Artificial Intelligence.2021:1288-1294. [2]GUTIÉRREZ-GÓMEZ L,BOVET A,DELVENNE J C.Multi-scale anomaly detection on attributed networks[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2020:678-685. [3]LI J,WEN J,TAI Z,et al.Bursty event detection from micro-blog:a distributed and incremental approach[J].Concurrency and Computation:Practice and Experience,2016,28(11):3115-3130. [4]SHAO M,LI J,CHEN F,et al.An efficient approach to event detection and forecasting in dynamic multivariate social media networks[C]//Proceedings of the 26th International Conference on World Wide Web.2017:1631-1639. [5]SHARPNACK J,SINGH A,RINALDO A.Changepoint detection over graphs with the spectral scan statistic[C]//Artificial Intelligence and Statistics.PMLR,2013:545-553. [6]WU N,CHEN F,LI J,et al.A Nonparametric Approach to Uncovering Connected Anomalies by Tree Shaped Priors[J].IEEE Transactions on Knowledge and Data Engineering,2019,31(10):1849-1862. [7]ZHENG L,LI Z,LI J,et al.AddGraph:Anomaly Detection in Dynamic Graph Using Attention-based Temporal GCN[C]//IJCAI.2019. [8]LEE P,LAKSHMANAN L V S,MILIOS E E.Incrementalcluster evolution tracking from highly dynamic network data[C]//2014 IEEE 30th International Conference on Data Engineering.IEEE,2014:3-14. [9]MONGIOVI M,BOGDANOV P,RANCA R,et al.Netspot:Spotting significant anomalous regions on dynamic networks[C]//Proceedings of the 2013 SIAM International Conference on Data Mining.Society for Industrial and AppliedMathema-tics,2013:28-36. [10]MONGIOVI M,BOGDANOV P,SINGH A K.Mining evolving network processes[C]//2013 IEEE 13th International Confe-rence on Data Mining.IEEE,2013:537-546. [11]SRICHARAN K,DAS K.Localizing anomalous changes in time-evolving graphs[C]//Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data.2014:1347-1358. [12]GOEL S,BAYKAL A,PON D.Botnets:the anatomy of a case[J].Journal of Information Systems Security,2006,1(3):1-12. [13]RUEHRUP S,URBANO P,BERGER A,et al.Botnet detection revisited:theory and practice of finding malicious P2P networks via Internet connection graphs[C]//2013 IEEEConference on Computer Communications Workshops(INFOCOM WKSHPS).IEEE,2013:435-440. [14]YAN Q,ZHENG Y,JIANG T,et al.Peerclean:Unveiling peer-to-peer botnets through dynamic group behavior analysis[C]//2015 IEEE Conference on Computer Communications(INFOCOM).IEEE,2015:316-324. [15]MYERS S A,ZHU C,LESKOVEC J.Information diffusion and external influence in networks[C]//Proceedings of the 18th ACM SIGKDD International Conference on KnowledgeDisco-very and Data Mining.2012:33-41. [16]HELBING D,TREIBER M,KESTING A,et al.Theoretical vs.empirical classification and prediction of congested traffic states[J].The European Physical Journal B,2009,69:583-598. [17]TREIBER M,KESTING A.Calibration and validation of models describing the spatiotemporal evolution of congested traffic patterns[J].arXiv:1008.1639,2010. [18]KERNER B S,REHBORN H,ALEKSIC M,et al.Recognition and tracking of spatial-temporal congested traffic patterns on freeways[J].Transportation Research Part C:Emerging Technologies,2004,12(5):369-400. [19]GAO J,ZHOU C,YU J X.Toward continuous pattern detection over evolving large graph with snapshot isolation[J].The VLDB Journal,2016,25:269-290. [20]FENG C.Non-Parametric Scan Statistics for Event Detectionand Forecasting in Heterogeneous Social Media Graphs[J].Journal of Biological Chemistry,2014,268(28):1166-1175. [21]MCFOWLAND E,SPEAKMAN S,NEILL D B.Fast genera-lized subset scan for anomalous pattern detection[J].The Journal of Machine Learning Research,2013,14(1):1533-1561. [22]TAKAHASHI K,KULLDORFF M,TANGO T,et al.A flexibly shaped space-time scan statistic for disease outbreak detection and monitoring[J].International Journal of Health Geographics,2008,7:1-14. [23]SPEAKMAN S,MCFOWLAND III E,NEILL D B.Scalable detection of anomalous patterns with connectivity constraints[J].Journal of Computational and Graphical Statistics,2015,24(4):1014-1033. [24]SHAO M,LI J,CHEN F,et al.An efficient framework for detecting evolving anomalous subgraphs in dynamic networks[C]//IEEE INFOCOM 2018-IEEE Conference on Computer Communications.IEEE,2018:2258-2266. [25]ZHANG Z,ZHAO L.Unsupervised Deep Subgraph AnomalyDetection[C]//2022 IEEE International Conference on Data Mining(ICDM).IEEE,2022:753-762. [26]BERK R H,JONES D H.Goodness-of-fit test statistics thatdominate the Kolmogorov statistics[J].Zeitschrift Für Wahrscheinlichkeitstheorie Und Verwandte Gebiete,1979,47(1):47-59. [27]DONOHO D,JIN J.Higher criticism for detecting sparse hete-rogeneous mixtures[J].The Annals of Statistics 2004,32(3):962-994. [28]BANSAL M,VENKAIAH V.Improved fully polynomial timeapproximation scheme for the 0-1 multiple-choice knapsack problem[J].International Institute of Information Technology Tech Report,2004:1-9. [29]WU N,CHEN F,LI J,et al.Efficient nonparametric subgraph detection using tree shaped priors[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2016. |
[1] | WU Huinan, XING Hongjie, LI Gang. Deep Multiple-sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior [J]. Computer Science, 2024, 51(6): 135-143. |
[2] | LI Shasha, XING Hongjie. Robust Anomaly Detection Based on Adversarial Samples and AutoEncoder [J]. Computer Science, 2024, 51(5): 363-373. |
[3] | HAO Meng, TIAN Xueyang, LU Gangzhao, LIU Yi, ZHANG Weizhe, HE Hui. Transplantation and Optimization of Graph Matching Algorithm Based on Domestic DCUHeterogeneous Platform [J]. Computer Science, 2024, 51(4): 67-77. |
[4] | PAN Lei, LIU Xin, CHEN Junyi, CHENG Zhangtao, LIU Leyuan, ZHOU Fan. Event Prediction Based on Dynamic Graph with Local Data Augmentation [J]. Computer Science, 2024, 51(3): 118-127. |
[5] | ZHOU Wenhao, HU Hongtao, CHEN Xu, ZHAO Chunhui. Weakly Supervised Video Anomaly Detection Based on Dual Dynamic Memory Network [J]. Computer Science, 2024, 51(1): 243-251. |
[6] | LI Hui, LI Wengen, GUAN Jihong. Dually Encoded Semi-supervised Anomaly Detection [J]. Computer Science, 2023, 50(7): 53-59. |
[7] | SHAN Xiaohuan, SONG Rui, LI Haihai, SONG Baoyan. Event Recommendation Method with Multi-factor Feature Fusion in EBSN [J]. Computer Science, 2023, 50(7): 60-65. |
[8] | JIANG Linpu, CHEN Kejia. Self-supervised Dynamic Graph Representation Learning Approach Based on Contrastive Prediction [J]. Computer Science, 2023, 50(7): 207-212. |
[9] | HENG Hongjun, ZHOU Wenhua. Anomaly Detection Method Based on Context Information Fusion and Noise Adaptation [J]. Computer Science, 2023, 50(7): 237-245. |
[10] | SUN Kaiwei, WANG Zhihao, LIU Hu, RAN Xue. Maximum Overlap Single Target Tracking Algorithm Based on Attention Mechanism [J]. Computer Science, 2023, 50(6A): 220400023-5. |
[11] | ZHANG Guohua, YAN Xuefeng, GUAN Donghai. Anomaly Detection of Time-series Based on Multi-modal Feature Fusion [J]. Computer Science, 2023, 50(6A): 220700094-7. |
[12] | SUN Xuekui, DAI Hua, ZHOU Jianguo, YANG Geng, CHEN Yanli. LTTFAD:Log Template Topic Feature-based Anomaly Detection [J]. Computer Science, 2023, 50(6): 313-321. |
[13] | ZHAO Song, FU Hao, WANG Hongxing. Pseudo-abnormal Sample Selection for Video Anomaly Detection [J]. Computer Science, 2023, 50(5): 146-154. |
[14] | ZHANG Renbin, ZUO Yicong, ZHOU Zelin, WANG Long, CUI Yuhang. Multimodal Generative Adversarial Networks Based Multivariate Time Series Anomaly Detection [J]. Computer Science, 2023, 50(5): 355-362. |
[15] | RAO Dan, SHI Hongwei. Study on Air Traffic Flow Recognition and Anomaly Detection Based on Deep Clustering [J]. Computer Science, 2023, 50(3): 121-128. |
|