Computer Science ›› 2024, Vol. 51 ›› Issue (6A): 230800043-9.doi: 10.11896/jsjkx.230800043
• Information Security • Previous Articles Next Articles
WANG Chenzhuo1, LU Yanrong1,2, SHEN Jian3
CLC Number:
[1]HU Y,HU A,LI C,et al.Towards a privacy protection-capable noise fingerprinting for numerically aggregated data[J].Computers & Security,2022,119(8):102755. [2]ZHANG F,FENG J.High-resolution mobile fingerprint matching via deep joint KNN-triplet embedding[C]//AAAI Confe-rence on Artificial Intelligence.2017:5019-2020. [3]NOGUEIRA R F,DE ALENCAR LOTUFO R,MACHADO R C.Fingerprint liveness detection using convolutional neural networks[J].IEEE Transactions on Information Forensics and Security,2016,11(6):1206-1213. [4]SUN S,CAO Z,ZHU H,et al.A survey of optimization methods from a machine learning perspective[J].IEEE Transactions on Cybernetics,2019,50(8):3668-3681. [5]ZHAO Y,LI M,LAI L,et al.Federated learning with non-iiddata[J].arXiv:1806.00582,2018. [6]KAIROUZ P,MCMAHAN H B,AVENT B,et al.Advances and open problems in federated learning[J].Foundations and Trends © in Machine Learning,2021,14(1/2):1-210. [7]MCMAHAN B,MOORE E,RAMAGE D,et al.Communica-tion-efficient learning of deep networks from decentralized data[C]//Artificial Intelligence and Statistics.PMLR,2017:1273-1282. [8]COETZEE L,BOTHA E C.Fingerprint recognition in low qua-lity images[J].Pattern recognition,1993,26(10):1441-1460. [9]LI K H.Reservoir-sampling algorithms of time complexity O(n(1+ log(N/n)))[J].ACM Transactions on Mathematical Software,1994,20(4):481-493. [10]CAPPELLI R,FERRARA M,MALTONI D.Minutia cylinder-code:A new representation and matching technique for fingerprint recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(12):2128-2141. [11]LEE W,CHO S,CHOI H,et al.Partial fingerprint matchingusing minutiae and ridge shape features for small fingerprint scanners[J].Expert Systems with Applications,2017,87(6):183-198. [12]ALAM B,JIN Z,YAP W S,et al.An alignment-free cancelable fingerprint template for bio-cryptosystems[J].Journal of Network and Computer Applications,2018,115(4):20-32. [13]WANG T,ZHENG Z,BASHIR A K,et al.FinPrivacy:A privacy-preserving mechanism for fingerprint identification[J].ACM Transactions on Internet Technology,2021,21(3):1-15. [14]ZHANG Z,LIU S,LIU M.A multi-task fully deep convolutional neural network for contactless fingerprint minutiae extraction[J].Pattern Recognition,2021,120(12):108189. [15]CAPPELLI R,FERRARA M,MALTONI D.Minutia cylinder-code:A new representation and matching technique for fingerprint recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(12):2128-2141. [16]ZHAO J,CHANG X,FENG Y,et al.Participant selection forfederated learning with heterogeneous data in intelligent transport system[J].IEEE Transactions on Intelligent Transportation Systems,2022,24(1):1-10. [17]ZHAO J,CHANG X,FENG Y,et al.Participant selection forfederated learning with heterogeneous data in intelligent transport system[J].IEEE Transactions on Intelligent Transportation Systems,2022,24(1):1-10. [18]WANG H,KAPLAN Z,NIU D,et al.Optimizing federatedlearning on non-iid data with reinforcement learning[C]//IEEE INFOCOM 2020-IEEE Conference on Computer Communications.2020:1698-1707. [19]LI X,ZHANG X,HUANG W,et al.Truncation cross entropy loss for remote sensing image captioning[J].IEEE Transactions on Geoscience and Remote Sensing,2020,59(6):5246-5257. [20]SHEHU Y I,RUIZ-GARCIA A,PALADE V,et al.Sokoto co-ventry fingerprint dataset[J].arXiv:1807.10609,2018. [21]CAPPELLI R,MAIO D,MALTONI D.Synthetic fingerprint-database generation[C]//International Conference on Pattern Recognition.2002:744-747. [22]MAIO D,MALTONI D,CAPPELLI R,et al.FVC2004:Thirdfingerprint verification competition[C]//Biometric Authentication:First International Conference.2004:1-7. [23]DA CUNHA A L,ZHOU J,DO M N.The nonsubsampled contourlet transform:theory,design,and applications[J].IEEE Transactions on Image Processing,2006,15(10):3089-3101. [24]LI T,SAHU A K,ZAHEER M,et al.Federated optimization in heterogeneous networks[C]//Machine Learning and Systems.MLSYS,2020:429-450. [25]NOGUEIRA R F,DE ALENCAR LOTUFO R,MACHADO R C.Fingerprint liveness detection using convolutional neural networks[J].IEEE Transactions on Information Forensics and Security,2016,11(6):1206-1213. [26]ULIYAN D M,SADEGHI S,JALAB H A.Anti-spoofing methodfor fingerprint recognition using patch based deep learning machine[J].Engineering Science and Technology an International Journal,2020,23(2):264-273. [27]PATIL S R,SURALKAR S R.Neural network based fingerprint classification[J].International Journal of Science and Research,2013,2(1):58-62. [28]KOUAMO S,TANGHA C.Fingerprint recognition with artificial neural networks:application to e-learning[J].Journal of Intelligent Learning Systems and Applications,2016,8(2):39-49. |
[1] | LAN Yajie, MA Ziqiang, CHEN Jiali, MIAO Li, XU Xin. Survey on Application of Searchable Attribute-based Encryption Technology Based on Blockchain [J]. Computer Science, 2024, 51(6A): 230800016-14. |
[2] | SUN Min, DING Xining, CHENG Qian. Federated Learning Scheme Based on Differential Privacy [J]. Computer Science, 2024, 51(6A): 230600211-6. |
[3] | TAN Zhiwen, XU Ruzhi, WANG Naiyu, LUO Dan. Differential Privacy Federated Learning Method Based on Knowledge Distillation [J]. Computer Science, 2024, 51(6A): 230600002-8. |
[4] | LIU Dongqi, ZHANG Qiong, LIANG Haolan, ZHANG Zidong, ZENG Xiangjun. Study on Smart Grid AMI Intrusion Detection Method Based on Federated Learning [J]. Computer Science, 2024, 51(6A): 230700077-8. |
[5] | ZHOU Tianyang, YANG Lei. Study on Client Selection Strategy and Dataset Partition in Federated Learning Basedon Edge TB [J]. Computer Science, 2024, 51(6A): 230800046-6. |
[6] | ZANG Hongrui, YANG Tingting, LIU Hongbo, MA Kai. Study on Cryptographic Verification of Distributed Federated Learning for Internet of Things [J]. Computer Science, 2024, 51(6A): 230700217-5. |
[7] | LIU Jianxun, ZHANG Xinglin. Federated Learning Client Selection Scheme Based on Time-varying Computing Resources [J]. Computer Science, 2024, 51(6): 354-363. |
[8] | XU Yicheng, DAI Chaofan, MA Wubin, WU Yahui, ZHOU Haohao, LU Chenyang. Particle Swarm Optimization-based Federated Learning Method for Heterogeneous Data [J]. Computer Science, 2024, 51(6): 391-398. |
[9] | LU Yanfeng, WU Tao, LIU Chunsheng, YAN Kang, QU Yuben. Survey of UAV-assisted Energy-Efficient Edge Federated Learning [J]. Computer Science, 2024, 51(4): 270-279. |
[10] | WANG Degang, SUN Yi, GAO Qi. Active Membership Inference Attack Method Based on Multiple Redundant Neurons [J]. Computer Science, 2024, 51(4): 373-380. |
[11] | WANG Xin, HUANG Weikou, SUN Lingyun. Survey of Incentive Mechanism for Cross-silo Federated Learning [J]. Computer Science, 2024, 51(3): 20-29. |
[12] | YOU Feifu, CAI Jianping, SUN Lan. Census Associated Multiple Attributes Data Release Based on Differential Privacy [J]. Computer Science, 2024, 51(3): 368-377. |
[13] | HUANG Nan, LI Dongdong, YAO Jia, WANG Zhe. Decentralized Federated Continual Learning Method Combined with Meta-learning [J]. Computer Science, 2024, 51(3): 271-279. |
[14] | WANG Dong, LI Zheng, XIAO Bingbing. Blockchain Coin Mixing Scheme Based on Homomorphic Encryption [J]. Computer Science, 2024, 51(3): 335-339. |
[15] | WANG Xun, XU Fangmin, ZHAO Chenglin, LIU Hongfu. Defense Method Against Backdoor Attack in Federated Learning for Industrial Scenarios [J]. Computer Science, 2024, 51(1): 335-344. |
|