Computer Science ›› 2024, Vol. 51 ›› Issue (7): 133-139.doi: 10.11896/jsjkx.231000137
• Database & Big Data & Data Science • Previous Articles Next Articles
YAN Qiuyan, SUN Hao, SI Yuqing, YUAN Guan
CLC Number:
[1]LI F M,YE Y W,LI X F,et al.Application of knowledge tra-cking model in Education:A Review of Relevant Studies from 2008 to 2017 [J].Distance Education in China,2019(7):86-91. [2]SU Y,LIU Q,LIU Q,et al.Exercise-Enhanced Sequential Mo-deling for Student Performance Prediction[C]//National Confe-rence on Artificial Intelligence.2018. [3]HOCHREITER S,SCHMIDHUBER J.Long Short-Term Me-mory[J].Neural Computation,1997,9(8):1735-1780. [4]CHEN Z.An experimental study on the influence of information presentation style and students' cognitive style on science lear-ning in multimedia environment[D].Chongqing:Southwestern Normal University,2004. [5]CHEN X L.Visual Computing-An Extension of Human Perception[J].Measurement&Control Technology,2000,19(5):7-14. [6]WANG L,LI Y,HUANG J,et al.Learning Two-Branch Neural Networks for Image-Text Matching Tasks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,201741(2):394-407. [7]NAKAGAWA H,IWASAWA Y,MATSUO Y.Graph-basedknowledge tracing:modeling student proficiency using graph neural network[C]//IEEE/WIC/ACM International Confe-rence on Web Intelligence.2019:156-163. [8]YANG Y,SHEN J,QU Y,et al.GIKT:a graph-based interaction model for knowledge tracing[C]//Machine Learning and Knowledge Discovery in Databases:European Conference.Springer International Publishing,2021:299-315. [9]WU Z,HUANG L,HUANG Q,et al.SGKT:Session graph-based knowledge tracing for student performance prediction[J].Expert Systems with Applications,2022,206:117681. [10]NGIAM J,KHOSLA A,KIM M,et al.Multimodal deep learning[C]//Proceedings of the 28th International Conference on Machine Learning(ICML-11).2011:689-696. [11]KARPATHY A,JOULIN A,FEI-FEI L F.Deep fragment embeddings for bidirectional image sentence mapping[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems.2014:1889-1897. [12]MALHOTRA P,RAMAKRISHNAN A,ANAND G,et al.LSTM-based encoder-decoder for multi-sensor anomaly detection[J].arXiv:1607.00148,2016. [13]MITCHELL M,DODGE J,GOYAL A,et al.Midge:Generating image descriptions from computer vision detections[C]//Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics/2012:747-756. [14]TENEY D,LIU L,VAN DEN HENGEL A.Graph-structuredrepresentations for visual question answering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017. [15]BALTRUŠAITIS T,AHUJA C,MORENCY L P.Multimodal machine learning:A survey and taxonomy[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2018,41(2):423-443. [16]TYLENDA T,ANGELOVA R,BEDATHUR S.Towards time-aware link prediction in evolving social networks[C]//Procee-dings of the 3rd Workshop on Social Network Mining and Ana-lysis.2009. [17]THEOCHARIDIS A,VAN DONGEN S,ENRIGHT A J,et al.Network visualization and analysis of gene expression data using BioLayout Express 3D[J].Nature Protocols,2009,4(10):1535-1550. [18]BATTAGLIA P,PASCANU R,LAI M,et al.Interaction networks for learning about objects,relations and physics[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.2016:4509-4517. [19]ATWOOD J,TOWSLEY D.Diffusion-convolutional neural networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.2016:2001-2009. [20]SUN Z,DENG Z H,NIE J Y,et al.Rotate:Knowledge graph embedding by relational rotation in complex space[J].arXiv:1902.10197,2019. [21]LI J H,WANG C,LI M.Knowledge Tracking Algorithm Driven by Graph Ripple Feature[J].Journal of Chinese Computer Systems.2023,44(7):1419-1427. [22]WU S Q,DONG Y H,WANG X,et al.Learning attribute network algorithm based on high-order similarity[J].Telecommunications Science,2020,36(12):20-32. [23]ZHOU C,LIU Y,LIU X,et al.Scalable graph embedding for asymmetric proximity[C]//Proceedings of the AAAI Confe-rence on Artificial Intelligence.2017. [24]DONG Y,CHAWLA N V,SWAMI A.metapath2vec:Scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:135-144. [25]WANG X,JI H,SHI C,et al.Heterogeneous graph attention network[C]//The World Wide Web Conference.2019:2022-2032. [26]LI J,SELVARAJU R,GOTMARE A,et al.Align before fuse:Vision and language representation learning with momentum distillation[J].Advances in Neural Information Processing Systems,2021,34:9694-9705. [27]PAGE L,BRIN S,MOTWANI R,et al.The PageRank citation ranking:Bringing order to the web[R].Stanford infolab,1999. [28]FENG H Y.Reserch of Teachers-Students's Space Distacne in the University[D].Zhengzhou:Henan University,2015. |
[1] | MAO Xingjing, WEI Yong, YANG Yurui, JU Shenggen. KHGAS:Keywords Guided Heterogeneous Graph for Abstractive Summarization [J]. Computer Science, 2024, 51(7): 278-286. |
[2] | PENG Bo, LI Yaodong, GONG Xianfu, LI Hao. Method for Entity Relation Extraction Based on Heterogeneous Graph Neural Networks and TextSemantic Enhancement [J]. Computer Science, 2024, 51(6A): 230700071-5. |
[3] | WANG Yifan, ZHANG Xuefang. Modality Fusion Strategy Research Based on Multimodal Video Classification Task [J]. Computer Science, 2024, 51(6A): 230300212-5. |
[4] | WANG Xiaolong, WANG Yanhui, ZHANG Shunxiang, WANG Caiqin, ZHOU Yuhao. Gender Discrimination Speech Detection Model Fusing Post Attributes [J]. Computer Science, 2024, 51(6): 338-345. |
[5] | LIAO Jinzhi, ZHAO Hewei, LIAN Xiaotong, JI Wenliang, SHI Haiming, ZHAO Xiang. Contrastive Graph Learning for Cross-document Misinformation Detection [J]. Computer Science, 2024, 51(3): 14-19. |
[6] | WU Jiawei, FANG Quan, HU Jun, QIAN Shengsheng. Pre-training of Heterogeneous Graph Neural Networks for Multi-label Document Classification [J]. Computer Science, 2024, 51(1): 143-149. |
[7] | JIN Tiancheng, DOU Liang, ZHANG Wei, XIAO Chunyun, LIU Feng, ZHOU Aimin. OJ Exercise Recommendation Model Based on Deep Reinforcement Learning and Program Analysis [J]. Computer Science, 2023, 50(8): 58-67. |
[8] | SHAN Xiaohuan, SONG Rui, LI Haihai, SONG Baoyan. Event Recommendation Method with Multi-factor Feature Fusion in EBSN [J]. Computer Science, 2023, 50(7): 60-65. |
[9] | WANG Han, LIU Wanping, LU Ling. Rumor Propagation Model of Microblog Network with Attenuation Effect and Forgetting Mechanism [J]. Computer Science, 2023, 50(6A): 220100189-7. |
[10] | ZHANG Hu, ZHANG Guangjun. Document-level Event Extraction Based on Multi-granularity Entity Heterogeneous Graph [J]. Computer Science, 2023, 50(5): 255-261. |
[11] | DONG Yongfeng, HUANG Gang, XUE Wanruo, LI Linhao. Graph Attention Deep Knowledge Tracing Model Integrated with IRT [J]. Computer Science, 2023, 50(3): 173-180. |
[12] | XIAO Yang, QIN Jianyang, LI Kenli, WANG Ge, LI Rui, LIAO Qing. Co-Forecasting for Multi-modal Traffic Flow Based on Graph Contrastive Learning [J]. Computer Science, 2023, 50(10): 135-145. |
[13] | PU Jinyao, BU Lingmei, LU Yongmei, YE Ziming, CHEN Li, YU Zhonghua. Utilizing Heterogeneous Graph Neural Network to Extract Emotion-Cause Pairs Effectively [J]. Computer Science, 2023, 50(1): 205-212. |
[14] | SONG Jie, LIANG Mei-yu, XUE Zhe, DU Jun-ping, KOU Fei-fei. Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level [J]. Computer Science, 2022, 49(9): 64-69. |
[15] | CHEN Zhi-yu, SHAN Zhi-long. Research Advances in Knowledge Tracing [J]. Computer Science, 2022, 49(10): 83-95. |
|