Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 240100058-9.doi: 10.11896/jsjkx.240100058
• Image Processing & Multimedia Technology • Previous Articles Next Articles
DONG Yan1,2, WEI Minghong1, GAO Guangshuai1, LIU Zhoufeng1, LI Chunlei1
CLC Number:
[1]HAN J,DING J,LI J,et al.Align deep features for oriented object detection[J].IEEE Transactions on Geoscience and Remote Sensing,2021,60:1-11. [2]XIA G S,BAI X,DING J,et al.DOTA:A large-scale dataset for object detection in aerial images[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:3974-3983. [3]RAN Y,ZHANG L.R-YOLOv5:Auto-cutting,R-otated TextDetection Model[J].Computer Science,2022,49(S2):637-642. [4]QIAN W,YANG X,PENG S,et al.RSDet++:Point-basedmodulated loss for more accurate rotated object detection[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32(11):7869-7879. [5]YANG X,YAN J,FENG Z,et al.R3det:Refined single-stagedetector with feature refinement for rotating object[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021,35(4):3163-3171. [6]LI X,WANG J G.Optimization Algorithm for Detection and Localization of Pure Face in Color Images[J].Computer Science,2009,36(7):284-287. [7]WANG W,CHENG J W,WANG X.Remote Sensing Targets Detection Based on Adaptive Weighting Feature Dictionaries and Joint Sparse[J].Computer Science,2018,45(10):276-280. [8]ZHU Y,FANG G S,ZHENG B B,et al.Research on DetectionMethod of Refined Rotated Boxes in Remote Sensing[J].Acta Automatica Sinica,2023,49(2):415-424. [9]LU Q,YU Y Q,XU D M,et al.Improved YOLOv5 for Small Drones Target Detection Algorithm[J].Computer Science,2023,50(S2):212-219. [10]MA J,SHAO W,YE H,et al.Arbitrary-oriented scene text detection via rotation proposals[J].IEEE Transactions on Multimedia,2018,20:3111-3122. [11]DING J,XUE N,LONG Y,et al.Learning roi transformer fororiented object detection in aerial images[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2019:2844-2853. [12]GUO Z,ZHANG X,LIU C,et al.Convex-hull feature adapta-tion for oriented and densely packed object detection[J].IEEE Transactions on Circuits and Systems for Video Technology,2022,32:5252-5265. [13]XU Y,FU M,WANG Q,et al.Gliding vertex on the horizontal bounding box for multi-oriented object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43:1452-1459. [14]ZHANG S,CHI C,YAO Y,et al.Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2020:9756-9765. [15]MING Q,ZHOU Z,MIAO L,et al.Dynamic anchor learning for arbitrary-oriented object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:2355-2363. [16]YANG X,YAN J,MING Q,et al.Rethinking rotated object detection wi5th gaussian wasserstein distance loss[C]//International Conference on Machine Learning.PMLR,2021:11830-11841. [17]WANG J,XU C,YANG W,et al.A normalized gaussian wasserstein distance for tiny object detection[J].arXiv,vol.abs/2110.13389,2021. [18]HUANG Z,LI W,XIA X G,et al.A general gaussian heatmap label assignment for arbitrary-oriented object detection[J].IEEE Transactions on Image Processing,2022,31:1895-1910. [19]REN S,HE K,GIRSHICK R B,et al.Faster r-cnn:Towardsreal-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2015,39:1137-1149. [20]LIN T Y,GOYAL P,GIRSHICK R B,et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42:318-327. [21]CHENG B,WEI Y,SHI H,et al.Revisiting rcnn:On awakening the classification power of faster rcnn[C]//Proceedings of the European Conference on Computer Vision(ECCV).2018:453-468. [22]CHENG B,WEI Y,FERIS R,et al.Decoupled classification refinement:Hard false positive suppression for object detection[J].arXiv:1810.04002,2018. [23]FENG C,ZHONG Y,GAO Y,et al.Tood:Task-aligned one-stage object detection[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV).2021:3490-3499. [24]ZHANG S,WEN L,LEI Z,et al.Refinedet++:Single-shot refinement neural network for object detection[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,31:674-687. [25]MING Q,MIAO L,ZHOU Z,et al.CFC-Net:A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote-Sensing Images[C]//IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-14. [26]LIU Z,YUAN L,WENG L,et al.A high resolution optical satellite image dataset for ship recognition and some new baselines[C]//International Conference on Pattern Recognition Applications and Methods.2017. [27]CHENG G,WANG J,LI K,et al.Anchor-free oriented proposal generator for object detection[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-11. [28]CHENG G,YAO Y,LI S,et al.Dual-aligned oriented detector[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-11. [29]WANG X,XIAO T,JIANG Y,et al.Repulsion Loss:Detecting Pedestrians in a Crowd[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Salt Lake City,UT,USA,2018:7774-7783. [30]ZHANG G,LU S,ZHANG W.CAD-Net:A context-aware detection network for objects in remote sensing imagery[J].IEEE Trans.Geosci.Remote Sens.,2019,57(12):10015-10024. [31]YANG X,YANG J,YAN J,et al.SCRDet:Towards more robust detection for small,cluttered and rotated objects[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision.2019:8232-8241. [32]PAN X,REN Y,SHENG K,et al.Dynamic refinement network for oriented and densely packed object detection[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR).2020:11204-11213. [33]CHEN Z,CHEN K,LIN W,et al. Piou loss:Towards accurate oriented object detection in complex environments[C]//Computer Vision-ECCV 2020:16th European Conference,Glasgow,UK,August 23-28,2020,Proceedings,Part V 16.Springer International Publishing,2020:195-211. [34]QIAN W,YANG X,PENG S,et al.Learning modulated loss for rotated object detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:2458-2466. [35]XIE X,CHENG G,WANG J,et al.Oriented r-cnn for object de-tection[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV).2021:3500-3509. [36]LI W,CHEN Y,HU K,et al.Oriented reppoints for aerial object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2022:1829-1838. |
[1] | JIANG Wenwen, XIA Ying. Improved U-Net Multi-scale Feature Fusion Semantic Segmentation Network for RemoteSensing Images [J]. Computer Science, 2025, 52(5): 212-219. |
[2] | WANG Qian, HE Lang, WANG Zhanqing, HUANG Kun. Road Extraction Algorithm for Remote Sensing Images Based on Improved DeepLabv3+ [J]. Computer Science, 2024, 51(8): 168-175. |
[3] | ZHANG Yang, XIA Ying. Object Detection Method with Multi-scale Feature Fusion for Remote Sensing Images [J]. Computer Science, 2024, 51(3): 165-173. |
[4] | LIU Changxin, WU Ning, HU Lirui, GAO Ba, GAO Xueshan. Recursive Gated Convolution Based Super-resolution Network for Remote Sensing Images [J]. Computer Science, 2024, 51(2): 205-216. |
[5] | FAN Xuejing, XUE Xiaorong, DU Yichao. Spatiotemporal Fusion Method for Remote Sensing Images Based on Dual Attention Mechanisms [J]. Computer Science, 2024, 51(11A): 240200097-6. |
[6] | SHI Jingye, ZUO Yiping, ZHI Ruicong, LIU Jiqiang, ZHANG Mengge. Multi-scale Dual Self-attention Based Remote Sensing Image Change Detection [J]. Computer Science, 2024, 51(11A): 231000097-9. |
[7] | YAN Yan, SUI Yi, SI Jianwei. Remote Sensing Image Pan-sharpening Method Based on Generative Adversarial Network [J]. Computer Science, 2023, 50(8): 133-141. |
[8] | WANG Kun-shu, ZHANG Ze-hui, GAO Tie-gang. Reversible Hidden Algorithm for Remote Sensing Images Based on Hachimoji DNA and QR Decomposition [J]. Computer Science, 2022, 49(8): 127-135. |
[9] | ZHANG Man, LI Jie, ZHU Xin-zhong, SHEN Ji, CHENG Hao-tian. Augmentation Technology of Remote Sensing Dataset Based on Improved DCGAN Algorithm [J]. Computer Science, 2021, 48(6A): 80-84. |
[10] | WANG Zhen-wu, SUN Jai-jun, YU Zhong-yi and BU Yi-ya. Review of Remote Sensing Image Classification Based on Support Vector Machine [J]. Computer Science, 2016, 43(9): 11-17. |
[11] | . Fast and Automatic Registration Method for Large Multi-spectral Remote Sensing Images [J]. Computer Science, 2012, 39(2): 61-65. |
[12] | XU Li-yan,WANG Jing,QIU Jun,SUN Quan-sen,XIA De-shen. Multi-spectral Remote Sensing Image Registration Based on Feature Point [J]. Computer Science, 2011, 38(7): 280-282. |
[13] | . [J]. Computer Science, 2009, 36(4): 268-272. |
|