Computer Science ›› 2024, Vol. 51 ›› Issue (11A): 240200116-8.doi: 10.11896/jsjkx.240200116
• Big Data & Data Science • Previous Articles Next Articles
LIN Yidi, LI Bicheng, YANG Haijun
CLC Number:
[1]ACEMOGLU D,OZDAGLAR A,SIDERIUS J.Misinforma-tion:Strategic sharing,homophily,and endogenous echo chambers[M].National Bureau of Economic Research,2021. [2]CINELLI M,DE FRANCISCI M G,GALEAZZI A,et al.Theecho chamber effect on social media[J].Proceedings of the National Academy of Sciences,2021,118(9):e2023301118. [3]MA J,GAO W,WONGK F.Rumor Detection on Twitter with Tree-structured Recursive Neural Networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computa-tional Linguistics(Volume 1:Long Papers).2018:1980-1989. [4]WU K,YANG S,ZHUK Q.False rumors detection on sina weibo by propagation structures[C]//2015 IEEE 31st International Conference on Data Engineering.IEEE,2015:651-662. [5]ZHOU X,WU J,ZAFARANI R.Similarity-Aware Multi-mo-dal Fake News Detection[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining.Cham:Springer International Publishing,2020:354-367. [6]ZHANG Y,WALLACE B C.A Sensitivity Analysis of(andPractitioners' Guide to) Convolutional Neural Networks for Sentence Classification[C]//Proceedings of the Eighth International Joint Conference on Natural Language Processing(Vo-lume 1:Long Papers).2017:253-263. [7]KALIYAR R K,GOSWAMI A,NARANG P.FakeBERT:Fakenews detection in social media with a BERT-based deep learning approach[J].Multimedia Ţools and Applications,2021,80(8):11765-11788. [8]KENTON J D M W C,TOUTANOVAL K.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of NAACL-HLT.2019:4171-4186. [9]CHEN T,LI X,YIN H,et al.Call attention to rumors:Deep at-tention based recurrent neural networks for early rumor detection[C]//Trends and Applications in Knowledge Discovery and Data Mining:PAKDD 2018 Workshops.Springer International Publishing,2018:40-52. [10]MA J,GAO W,WONGK F.Detect rumors on twitter by promoting information campaigns with generative adversarial learning[C]//The World Wide Web Conference.2019:3049-3055. [11]MA J,GAO W.Debunking Rumors on Twitter with Tree Trans-former[C]//Proceedings of the 28th International Conference on Computational Linguistics.2020:5455-5466. [12]MONTI F,FRASCA F,EYNARD D,et al.Fake news detection on social media using geometric deep learning[J].arXiv:1902.06673,2019. [13]HAN Y,KARUNASEKERA S,LECKIE C.Graph neural net-works with continual learning for fake news detection from social media[J].arXiv:2007.03316,2020. [14]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [15]MATSUMOTO H,YOSHIDA S,MUNEYASU M.Propagation-based fake news detection using graph neural networks with transformer[C]//2021 IEEE 10th Global Conference on Consumer Electronics(GCCE).IEEE,2021:19-20. [16]SONG C,SHU K,WU B.Temporally evolving graph neural network for fake news detection[J].Information Processing & Management,2021,58(6):102712. [17]SILVA A,HAN Y,LUO L,et al.Propagation2Vec:Embeddingpartial propagation networks for explainable fake news early detection[J].Information Processing & Management,2021,58(5):102618. [18]DOU Y,SHU K,XIA C,et al.User preference-aware fake news detection[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.2021:2051-2055. [19]WEI L,HU D,ZHOU W,et al.Towards Propagation Uncer-tainty:Edge-enhanced Bayesian Graph Convolutional Networks for Rumor Detection[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).2021:3845-3854. [20]ZHENG J,ZHANG X,GUO S,et al.MFAN:Multi-modal Feature-enhanced Attention Networks for Rumor Detection[C]//IJCAI,2022:2413-2419. [21]BIAN T,XIAO X,XU T,et al.Rumor detection on social media with bi-directional graph convolutional networks[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2020:549-556. [22]GONG S,SINNOTT R O,QI J,et al.Fake News DetectionThrough Temporally Evolving User Interactions[C]//Pacific-Asia Cnference on Knowledge Discovery and Data Mining.Cham:Springer Nature Switzerland,2023:137-148. [23]YUAN C,MA Q,ZHOU W,et al.Jointly embedding the local and global relations of heterogeneous graph for rumor detection[C]//2019 IEEE International Conference on Data Mining(ICDM).IEEE,2019:796-805. [24]WU Y,ZHAN P,ZHANG Y,et al.Multimodal fusion with co-attention networks for fake news detection[C]//Findings of the Association for Computational Linguistics(ACL-IJCNLP 2021).2021:2560-2569. [25]SHU K,MAHUDESWARAN D,WANG S,et al.Fakenewsnet:A data repository with news content,social context,and spatiotemporal information for studying fake news on social media[J].Big Data,2020,8(3):171-188. [26]YING R,YOU J,MORRIS C,et al.Hierarchical graph representation learning with differentiable pooling[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems.2018:4805-4815. [27]VELICKOVIC P,CUCURULL G,CASANOVA A,et al.Graph Attention Networks[J].Stat,2018,1050:4. |
[1] | ZHANG Tianzhi, ZHOU Gang, LIU Hongbo, LIU Shuo, CHEN Jing. Text-Image Gated Fusion Mechanism for Multimodal Aspect-based Sentiment Analysis [J]. Computer Science, 2024, 51(9): 242-249. |
[2] | HAN Xueming, JIA Caiyan, LI Xuanya, ZHANG Pengfei. Dual-attention Network Model on Propagation Tree Structures for Rumor Detection [J]. Computer Science, 2023, 50(4): 22-31. |
[3] | GUO Gui-juan, TIAN Hui, WANG Tian, JIA Wei-jia. Efficient Federated Learning Scheme Based on Background Optimization [J]. Computer Science, 2022, 49(12): 40-45. |
[4] | CHEN Jin-peng, HU Ha-lei, ZHANG Fan, CAO Yuan, SUN Peng-fei. Convolutional Sequential Recommendation with Temporal Feature and User Preference [J]. Computer Science, 2022, 49(1): 115-120. |
[5] | ZHOU Xiao-shi, ZHANG Zi-wei, WEN Juan. Natural Language Steganography Based on Neural Machine Translation [J]. Computer Science, 2021, 48(11A): 557-564. |
[6] | JIAO Yang, YANG Chuan-ying, SHI Bao. Relevance Feedback Method Based on SVM in Shoeprint Images Retrieval [J]. Computer Science, 2020, 47(11A): 244-247. |
[7] | WEN Wen, LIN Ze-tian, CAI Rui-chu, HAO Zhi-feng, WANG Li-juan. Predicting User’s Dynamic Preference Based on Embedding Learning [J]. Computer Science, 2019, 46(10): 32-38. |
[8] | SHI Jin-ping,LI Jin,HE Feng-zhen. Diversity Recommendation Approach Based on Social Relationship and User Preference [J]. Computer Science, 2018, 45(6A): 423-427. |
[9] | YAO Han-bing, XING Na-na, ZHOU Jun-wei and LI Yong-hua. Study on Secure Retrieval Scheme over Encrypted Data Supporting Result Ranking [J]. Computer Science, 2018, 45(5): 123-130. |
[10] | GUO Shuai, LIU Liang and QIN Xiao-lin. Spatial Keyword Range Query with User Preferences Constraint [J]. Computer Science, 2018, 45(4): 182-189. |
[11] | XIAO Jing-jie, CHEN Zhi-yun. Focused Crawling Based on Grey Wolf Algorithms [J]. Computer Science, 2018, 45(11A): 146-148. |
[12] | LI Feng, HUANG Jin-zhu, LI Zhou-jun and YANG Wei-ming. Study on Domain-corpus Driven Calculation Method of Sentence Relevance [J]. Computer Science, 2016, 43(5): 188-192. |
[13] | LIANG Hong-tao, XU Jian-liang and XU Ke. Software Reliability Prediction Model Based on Hybrid Kernels RVM [J]. Computer Science, 2016, 43(11): 257-259. |
[14] | LI Jun-huai, FU Jing-fei, JIANG Wen-jie, FEI Rong and WANG Huai-jun. Feature Selection Method Based on MRMR for Text Classification [J]. Computer Science, 2016, 43(10): 225-228. |
[15] | LI Wei-jiang and WANG Feng. Method of Query Expansion Based on LCA Prune Semantic Tree [J]. Computer Science, 2015, 42(Z6): 479-483. |
|